Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 206704 by mr W last updated on 22/Apr/24

Commented by mr W last updated on 22/Apr/24

find (Δ_(XYZ) /Δ_(ABC) )=?

findΔXYZΔABC=?

Answered by A5T last updated on 22/Apr/24

BD=x;DC=y  ((AE)/(EC))×((CZ)/(ZF))×((FB)/(BA))=1⇒((AE)/(EC))=((BA)/(FB))=((x+2y)/(x+y))  ((CD)/(DB))×((BY)/(YE))×((EA)/(AC))=1⇒(y/x)=((CD)/(DB))=((AC)/(EA))  ((BF)/(FA))×((AX)/(XD))×((DC)/(CB))=1⇒((BF)/(FA))=((BC)/(DC))=((x+y)/y)  ⇒((AE)/(EC))×((CD)/(DB))×((BF)/(FA))=((x+2y)/x)  ⇒(([XYZ])/([ABC]))=(((1−((x+2y)/x))^2 )/((1+((x+2y)/(x+y))+((y(x+2y))/(x(x+y))))(1+(y/x)+((x+y)/x))(1+((x+y)/y)+((x+2y)/y))))  =(y^3 /(2(x+2y)(x+y)^2 ))

BD=x;DC=yAEEC×CZZF×FBBA=1AEEC=BAFB=x+2yx+yCDDB×BYYE×EAAC=1yx=CDDB=ACEABFFA×AXXD×DCCB=1BFFA=BCDC=x+yyAEEC×CDDB×BFFA=x+2yx[XYZ][ABC]=(1x+2yx)2(1+x+2yx+y+y(x+2y)x(x+y))(1+yx+x+yx)(1+x+yy+x+2yy)=y32(x+2y)(x+y)2

Commented by A5T last updated on 23/Apr/24

((AC)/(EA))=(y/x) ∧ ((AC)/(EA))=((2x+3y)/(x+2y))  ⇒(y/x)=((2x+3y)/(x+2y))⇒y=((x((√5)+1))/2)  ⇒(([XYZ])/([ABC]))=((7−3(√5))/4)≈0.07295

ACEA=yxACEA=2x+3yx+2yyx=2x+3yx+2yy=x(5+1)2[XYZ][ABC]=73540.07295

Commented by mr W last updated on 23/Apr/24

��

Answered by mr W last updated on 23/Apr/24

Commented by mr W last updated on 23/Apr/24

((EY)/(YB))×(a/b)×((c+d)/d)=1  ⇒(c/d)=(b/a)−1=λ−1 with λ=(b/a)  ((FZ)/(ZC))×(c/d)×((p+q)/q)=1  ⇒(λ−1)(1+(p/q))=1 ⇒(p/q)=(1/(λ−1))−1  ((DX)/(XA))×(p/q)×((a+b)/b)=1  ⇒((1/(λ−1))−1)(1+(1/λ))=1  ⇒λ^2 −λ−1=0  ⇒λ=((1+(√5))/2)=ϕ (golden ratio)  (similarly (d/c)=(q/p)=λ)  let μ=((ZY)/(YB))=((XZ)/(ZC))=((YX)/(XA))  ((ZY)/(YB))×(a/b)×((CX)/(XZ))=1  ⇒μ×(1/λ)×((1/μ)+1)=1  ⇒μ=λ−1=(((√5)−1)/2)=(1/λ)  [ΔADC]=(b/(a+b))[ΔABC]=(λ/(1+λ))[ΔABC]  [ΔCXD]=(([ΔADC])/2)=(λ/(2(1+λ)))[ΔABC]  [ΔCYX]=((XY)/(YD))[ΔCDX]=μ[ΔCDX]=((μλ)/(2(1+λ)))[ΔABC]  [ΔXYZ]=((XZ)/(XC))[ΔCYX]=(μ/(1+μ))[ΔCYX]=((μ^2 λ)/(2(1+μ)(1+λ)))[ΔABC]  ⇒(([ΔXYZ])/([ΔABC]))=((μ^2 λ)/(2(1+μ)(1+λ)))=(1/(2λ^4 ))                         =((7−3(√5))/4)≈0.07295

EYYB×ab×c+dd=1cd=ba1=λ1withλ=baFZZC×cd×p+qq=1(λ1)(1+pq)=1pq=1λ11DXXA×pq×a+bb=1(1λ11)(1+1λ)=1λ2λ1=0λ=1+52=φ(goldenratio)(similarlydc=qp=λ)letμ=ZYYB=XZZC=YXXAZYYB×ab×CXXZ=1μ×1λ×(1μ+1)=1μ=λ1=512=1λ[ΔADC]=ba+b[ΔABC]=λ1+λ[ΔABC][ΔCXD]=[ΔADC]2=λ2(1+λ)[ΔABC][ΔCYX]=XYYD[ΔCDX]=μ[ΔCDX]=μλ2(1+λ)[ΔABC][ΔXYZ]=XZXC[ΔCYX]=μ1+μ[ΔCYX]=μ2λ2(1+μ)(1+λ)[ΔABC][ΔXYZ][ΔABC]=μ2λ2(1+μ)(1+λ)=12λ4=73540.07295

Terms of Service

Privacy Policy

Contact: info@tinkutara.com