Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 206721 by ajfour last updated on 23/Apr/24

∫((xdx)/(x+4))=?       please

xdxx+4=?please

Answered by A5T last updated on 23/Apr/24

(x/(x+4))=((x+4−4)/(x+4))=1−(4/(x+4))  ⇒∫(x/(x+4))dx=∫1dx−4∫(1/(x+4))dx  =x−4ln∣x+4∣+c

xx+4=x+44x+4=14x+4xx+4dx=1dx41x+4dx=x4lnx+4+c

Commented by ajfour last updated on 23/Apr/24

Oh yes! thank you. this is the answer.

Ohyes!thankyou.thisistheanswer.

Commented by necx122 last updated on 23/Apr/24

It's funny how after after a long while we see Ajfour's post and it's a quite simple integral relative to what we know him for. Welcome back our prof.������

Commented by mr W last updated on 23/Apr/24

i guess it′s not him personally.

iguessitsnothimpersonally.

Commented by ajfour last updated on 23/Apr/24

yeah me, bit irritated yet amused by life. It will get okay, assure you.

Commented by mr W last updated on 23/Apr/24

then welcome back sir!

thenwelcomebacksir!

Answered by Ghisom last updated on 23/Apr/24

∫(x/(x+4))dx=       [t=((√(x+4))/2) → dx=4(√(x+4))dt]  =8∫(t−(1/t))dt=4t^2 −8ln t =  =x−4ln ∣x+4∣ +C

xx+4dx=[t=x+42dx=4x+4dt]=8(t1t)dt=4t28lnt==x4lnx+4+C

Commented by ajfour last updated on 23/Apr/24

wow!

wow!

Answered by BaliramKumar last updated on 24/Apr/24

put     x = 4tan^2 y               dx = 8tanysec^2 ydy  ∫((4tan^2 y)/(4tan^2 y+4))∙8tanysec^2 ydy  ∫((4tan^2 y)/(4sec^2 y))∙8tanysec^2 ydy  8∫tany(tan^2 y)dy = 8∫tany(sec^2 y−1)dy   8∫tanysec^2 ydy−8∫tanydy   8[((tan^2 y)/2)] − 8ln(secy)  4tan^2 y − 4ln(sec^2 y) = x − 4ln(((4sec^2 y)/4))  x − 4ln(((4tan^2 y + 4)/4)) = x − 4ln(((x + 4)/4))   x − 4ln∣x+4∣ + 4ln∣4∣  x − 4ln∣x+4∣ + C

putx=4tan2ydx=8tanysec2ydy4tan2y4tan2y+48tanysec2ydy4tan2y4sec2y8tanysec2ydy8tany(tan2y)dy=8tany(sec2y1)dy8tanysec2ydy8tanydy8[tan2y2]8ln(secy)4tan2y4ln(sec2y)=x4ln(4sec2y4)x4ln(4tan2y+44)=x4ln(x+44)x4lnx+4+4ln4x4lnx+4+C

Answered by peter frank last updated on 24/Apr/24

u=x+4  x=u−4  du=dx  ∫((xdu)/u)=∫((u−4)/u)du=∫1du−∫(4/u)=u−4ln u  ∫1du−∫(4/u)du=u−4ln u  x+4−4ln (x+4)

u=x+4x=u4du=dxxduu=u4udu=1du4u=u4lnu1du4udu=u4lnux+44ln(x+4)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com