Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 206730 by mathzup last updated on 23/Apr/24

find lim_(n→+∞) ∫_0 ^n e^(nx)  arctan((x/n))dx

findlimn+0nenxarctan(xn)dx

Commented by aleks041103 last updated on 24/Apr/24

More interesting is  lim_(n→∞)  ∫_0 ^( n) e^(−nx) arctan((x/n))dx = lim_(n→∞)  J_n     J_n = ∫_0 ^( n) e^(−nx) arctan((x/n))dx =   = ∫_0 ^( 1) ne^(−n^2 t) arctan(t)dt = ∫_0 ^( 1) f_n (t)dt  obviously if we fix t then:  lim_(n→∞)  f_n (t) = arctan(t)lim_(n→∞)  ne^(−n^2 t)  = 0   lim_(n→∞)  f_n (t)=0, t∈[0,1]  ⇒f_n →^([0,1])  0 pointwise    but also:  arctan(t)≤t for t∈[0,1]  ⇒0≤f_n (t)≤nte^(−n^2 t) =(1/n) (ae^(−a) ), a=n^2 t∈[0,n^2 ]⊂[0,∞)  ⇒f_n (t)≤(1/n)(ae^(−a) )≤(1/n)(sup_(a∈[0,n^2 ])  ae^(−a) )≤(1/n)(sup_(a≥0)  ae^(−a) )  but  g(a)=ae^(−a) ⇒g′=(1−a)e^(−a) =0⇒a=1  ⇒sup_(a≥0)  ae^(−a)  = g(1) = e^(−1)   ⇒0≤f_n (t)≤(1/(en)), t∈[0,1]  ⇒∥f_n ∥=sup_(t∈[0,1])  ∣f_n (t)∣≤(1/(en))  ⇒lim_(n→∞)  ∥f_n ∥=0  ⇒f_n ⇉^([0,1]) 0, i.e. uniformly  ⇒lim_(n→∞)  ∫_0 ^( 1) f_n (t)dt = ∫_0 ^( 1) [lim_(n→∞)  f_n (t)]dt=  =∫_0 ^( 1) 0dt=0  ⇒lim_(n→∞)  J_n =0  ⇒lim_(n→∞)  ∫_0 ^( n) e^(−nx) arctan((x/n))dx = 0

Moreinterestingislimn0nenxarctan(xn)dx=limnJnJn=0nenxarctan(xn)dx==01nen2tarctan(t)dt=01fn(t)dtobviouslyifwefixtthen:limnfn(t)=arctan(t)limnnen2t=0limnfn(t)=0,t[0,1]fn[0,1]0pointwisebutalso:arctan(t)tfort[0,1]0fn(t)nten2t=1n(aea),a=n2t[0,n2][0,)fn(t)1n(aea)1n(supa[0,n2]aea)1n(supa0aea)butg(a)=aeag=(1a)ea=0a=1supa0aea=g(1)=e10fn(t)1en,t[0,1]⇒∥fn∥=supt[0,1]fn(t)∣⩽1enlimnfn∥=0fn[0,1]0,i.e.uniformlylimn01fn(t)dt=01[limnfn(t)]dt==010dt=0limnJn=0limn0nenxarctan(xn)dx=0

Answered by aleks041103 last updated on 24/Apr/24

x=nt⇒dx=ndt  ⇒∫_0 ^( n) e^(nx) arctan(x/n)dx=∫_0 ^( 1) e^(n^2 t) arctan(t)ndt=I_n   but e^(n^2 t) ≥1 for t∈[0,1]  I_n =n∫_0 ^( 1) e^(n^2 t) arctan(t)dt≥n∫_0 ^( 1) arctan(t)dt=  =n{[t arctan(t)]_0 ^1 −∫_0 ^( 1) ((tdt)/(1+t^2 ))}=  =n{(π/4)−(1/2)[ln(1+t^2 )]_0 ^1 }=n((π/4)−((ln(2))/2))  but (π/4)>(3/4)=0.75 and (1/2)ln(2)<(1/2)=0.5  ⇒c=(π/4)−((ln(2))/2)>0.25>0  ⇒I_n >cn, c>0  ⇒since lim_(n→∞)  cn = +∞ then  lim_(n→∞)  I_n  = lim_(n→∞)  ∫_0 ^( n) e^(nx)  arctan((x/n))dx = +∞

x=ntdx=ndt0nenxarctan(x/n)dx=01en2tarctan(t)ndt=Inbuten2t1fort[0,1]In=n01en2tarctan(t)dtn01arctan(t)dt==n{[tarctan(t)]0101tdt1+t2}==n{π412[ln(1+t2)]01}=n(π4ln(2)2)butπ4>34=0.75and12ln(2)<12=0.5c=π4ln(2)2>0.25>0In>cn,c>0sincelimncn=+thenlimnIn=limn0nenxarctan(xn)dx=+

Terms of Service

Privacy Policy

Contact: info@tinkutara.com