Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 206754 by mathzup last updated on 23/Apr/24

find ∫_0 ^1 (√(1−(√x)))ln^2 (x)dx

find011xln2(x)dx

Answered by Berbere last updated on 24/Apr/24

x=u^2 ⇒dx=2udu  ∫_0 ^1 (√(1−(√x)))ln^2 (x)dx.=A=∫_0 ^1 (1−u)^(1/2) (2ln(u))^2 .2udu  =8∫_0 ^1 (1−u)^(1/2) ln^2 (u).udu  f(a)=∫_0 ^1 (1−u)^((3/2)−1) u^(a−1) =β(a,(3/2))du;f′′(a)=∫_0 ^1 (1−u)^(1/2) ln^2 (u).u^(a−1) du  f′(a)=β(a,(3/2))(Ψ(a)−Ψ(a+(3/2)))  f′′(a)=β(a,(3/2)){(Ψ(a)−Ψ(a+(3/2)))+(Ψ′(a)−Ψ′(a+(3/2))}  A=8f′′(2)  =8(β(2,(3/2))){(Ψ(2)−Ψ((3/2)+2))^2 +(Ψ′(2)−Ψ′(2+(3/2))))  =8.((Γ((3/2))Γ(2))/(Γ(2+(3/2)))){(1+Ψ(1)−{(2/5)+(2/3)+2+Ψ((1/2))})^2 +(ζ(2)−1((4/(25))+(4/9)+4+Ψ′((1/2)))  Ψ(1)=−γ;Ψ((1/2))=−2ln(2)−γ  ζ(2)=(π^2 /6)  Ψ((1/2))=Σ_(n≥0) (1/(((1/2)+n)^2 ))=Σ_(n≥0) (4/((2n+1)^2 ))=4(1−(1/4))ζ(2)  Γ(2+(3/2))=(1+(3/2))((3/2))Γ((3/2))...

x=u2dx=2udu011xln2(x)dx.=A=01(1u)12(2ln(u))2.2udu=801(1u)12ln2(u).uduf(a)=01(1u)321ua1=β(a,32)du;f(a)=01(1u)12ln2(u).ua1duf(a)=β(a,32)(Ψ(a)Ψ(a+32))f(a)=β(a,32){(Ψ(a)Ψ(a+32))+(Ψ(a)Ψ(a+32)}A=8f(2)=8(β(2,32)){(Ψ(2)Ψ(32+2))2+(Ψ(2)Ψ(2+32)))=8.Γ(32)Γ(2)Γ(2+32){(1+Ψ(1){25+23+2+Ψ(12)})2+(ζ(2)1(425+49+4+Ψ(12))Ψ(1)=γ;Ψ(12)=2ln(2)γζ(2)=π26Ψ(12)=n01(12+n)2=n04(2n+1)2=4(114)ζ(2)Γ(2+32)=(1+32)(32)Γ(32)...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com