All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 206754 by mathzup last updated on 23/Apr/24
find∫011−xln2(x)dx
Answered by Berbere last updated on 24/Apr/24
x=u2⇒dx=2udu∫011−xln2(x)dx.=A=∫01(1−u)12(2ln(u))2.2udu=8∫01(1−u)12ln2(u).uduf(a)=∫01(1−u)32−1ua−1=β(a,32)du;f″(a)=∫01(1−u)12ln2(u).ua−1duf′(a)=β(a,32)(Ψ(a)−Ψ(a+32))f″(a)=β(a,32){(Ψ(a)−Ψ(a+32))+(Ψ′(a)−Ψ′(a+32)}A=8f″(2)=8(β(2,32)){(Ψ(2)−Ψ(32+2))2+(Ψ′(2)−Ψ′(2+32)))=8.Γ(32)Γ(2)Γ(2+32){(1+Ψ(1)−{25+23+2+Ψ(12)})2+(ζ(2)−1(425+49+4+Ψ′(12))Ψ(1)=−γ;Ψ(12)=−2ln(2)−γζ(2)=π26Ψ(12)=∑n⩾01(12+n)2=∑n⩾04(2n+1)2=4(1−14)ζ(2)Γ(2+32)=(1+32)(32)Γ(32)...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com