Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 206794 by MaruMaru last updated on 25/Apr/24

help me...  ∫_0 ^∞   ((sin(t)ln(t))/t)e^(−t)  dt

helpme...0sin(t)ln(t)tetdt

Answered by Berbere last updated on 25/Apr/24

let f(a)=∫_0 ^∞ (1/t)sin(at)ln(t)e^(−t) dt  a∈R f is defined  f(0)=0 We want f(1)  we can verifie That f is C_1   ∀t∈]0,∞[ a→^g ((sin(at))/t)ln(t)e^(−t)  is deivable  ∀a∈R t→((sin(at))/t)ln(t)e^(−t)  is integrabe  g′(a)=cos(at)ln(t)e^(−t)   ∣g′(a)∣≤∣ln(t)∣e^(−t) ;∀a∈R  ∫_0 ^∞ ∣ln(t)∣e^(−t) dt<∞⇒we can switch ∂ and ∫  f′(a)=∫_0 ^∞ cos(at)ln(t)e^(−t) =Re∫_0 ^∞ ln(t)e^(t(−1+ia)) dt  introduce h(z)=∫_0 ^∞ t^z e^(t(−1+ia)) ;z≥0  f′(a)=h′(z)∣_(z=0)   h(z)=^((−1+ia)t→t) −∫_0 ^∞ ((t^z e^(−t) )/((−1+ia)^(z+1) ))dt=((Γ(1+z))/((−1+ia)^(z+1) ))  f′(a)=h′(a)=−((Γ′(1)(−1+ia)−ln(−1+ia)(−1+ia))/((−1+ia)^2 ))  =−(((Γ′(1))/(−1+ia))−((ln(−1+ia))/(−1+ia)));Γ′(1)=−γ∴Γ′(1)=Γ(1)Ψ(1)=1.−γ  f′(a)=−Re((γ/(1−ia))+((ln(−1+ia))/(1−ia)))  Re is lineair   f(1)=∫_0 ^1 f′(a)da;=−Re∫_0 ^1 ((γ/(1−ia))+((ln(−1+ia))/(1−ia)))da  =−Re[(γ/(−i))ln(1−ia)+(1/(−2i))ln^2 (−1+ia)]_0 ^1   =−Re[γiln(1−i)+(i/2)ln^2 (1−i)−(i/2)ln^2 (−1)]  log(z)=ln∣z∣ +i arg(z);z∈]−π,π]   =−Re(γi(ln((√2))−((iπ)/4)+(i/2)(ln(√2)−((iπ)/4))^2 −(i/2)(iπ)^2 )  =−(((γπ)/4)+(π/4)ln((√2)))=−(π/4)γ−((πln(2))/8)  ∫_0 ^∞ ((sin(t)ln(t)e^(−t) )/t)dt=−(π/4)(γ+((ln(2))/2))

letf(a)=01tsin(at)ln(t)etdtaRfisdefinedf(0)=0Wewantf(1)wecanverifieThatfisC1t]0,[agsin(at)tln(t)etisdeivableaRtsin(at)tln(t)etisintegrabeg(a)=cos(at)ln(t)etg(a)∣⩽∣ln(t)et;aR0ln(t)etdt<wecanswitchandf(a)=0cos(at)ln(t)et=Re0ln(t)et(1+ia)dtintroduceh(z)=0tzet(1+ia);z0f(a)=h(z)z=0h(z)=(1+ia)tt0tzet(1+ia)z+1dt=Γ(1+z)(1+ia)z+1f(a)=h(a)=Γ(1)(1+ia)ln(1+ia)(1+ia)(1+ia)2=(Γ(1)1+ialn(1+ia)1+ia);Γ(1)=γΓ(1)=Γ(1)Ψ(1)=1.γf(a)=Re(γ1ia+ln(1+ia)1ia)Reislineairf(1)=01f(a)da;=Re01(γ1ia+ln(1+ia)1ia)da=Re[γiln(1ia)+12iln2(1+ia)]01=Re[γiln(1i)+i2ln2(1i)i2ln2(1)]log(z)=lnz+iarg(z);z]π,π]=Re(γi(ln(2)iπ4+i2(ln2iπ4)2i2(iπ)2)=(γπ4+π4ln(2))=π4γπln(2)80sin(t)ln(t)ettdt=π4(γ+ln(2)2)

Commented by MaruMaru last updated on 26/Apr/24

°⌣°  good thx!

°°goodthx!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com