All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 206794 by MaruMaru last updated on 25/Apr/24
helpme...∫0∞sin(t)ln(t)te−tdt
Answered by Berbere last updated on 25/Apr/24
letf(a)=∫0∞1tsin(at)ln(t)e−tdta∈Rfisdefinedf(0)=0Wewantf(1)wecanverifieThatfisC1∀t∈]0,∞[a→gsin(at)tln(t)e−tisdeivable∀a∈Rt→sin(at)tln(t)e−tisintegrabeg′(a)=cos(at)ln(t)e−t∣g′(a)∣⩽∣ln(t)∣e−t;∀a∈R∫0∞∣ln(t)∣e−tdt<∞⇒wecanswitch∂and∫f′(a)=∫0∞cos(at)ln(t)e−t=Re∫0∞ln(t)et(−1+ia)dtintroduceh(z)=∫0∞tzet(−1+ia);z⩾0f′(a)=h′(z)∣z=0h(z)=(−1+ia)t→t−∫0∞tze−t(−1+ia)z+1dt=Γ(1+z)(−1+ia)z+1f′(a)=h′(a)=−Γ′(1)(−1+ia)−ln(−1+ia)(−1+ia)(−1+ia)2=−(Γ′(1)−1+ia−ln(−1+ia)−1+ia);Γ′(1)=−γ∴Γ′(1)=Γ(1)Ψ(1)=1.−γf′(a)=−Re(γ1−ia+ln(−1+ia)1−ia)Reislineairf(1)=∫01f′(a)da;=−Re∫01(γ1−ia+ln(−1+ia)1−ia)da=−Re[γ−iln(1−ia)+1−2iln2(−1+ia)]01=−Re[γiln(1−i)+i2ln2(1−i)−i2ln2(−1)]log(z)=ln∣z∣+iarg(z);z∈]−π,π]=−Re(γi(ln(2)−iπ4+i2(ln2−iπ4)2−i2(iπ)2)=−(γπ4+π4ln(2))=−π4γ−πln(2)8∫0∞sin(t)ln(t)e−ttdt=−π4(γ+ln(2)2)
Commented by MaruMaru last updated on 26/Apr/24
°⌣°goodthx!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com