Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 206899 by MATHEMATICSAM last updated on 29/Apr/24

If tanθ = ((2x(x + 1))/(2x + 1)) then find sinθ and  cosθ.

Iftanθ=2x(x+1)2x+1thenfindsinθandcosθ.

Answered by mathzup last updated on 29/Apr/24

1+tan^2 θ =(1/(cos^2 θ)) ⇒cos^2 θ =(1/(1+tan^2 θ))  =(1/(1+((4x^2 (x+1)^2 )/((2x+1)^2 ))))=(((2x+1)^2 )/((2x+1)^2 +4x^2 (x+1)^2 ))  =((4x^2 +4x+1)/(4x^2 +4x+1+4x^2 (x^2 +2x+1)))  =((4x^2 +4x+1)/(4x^2 +4x+1 +4x^4 +8x^3 +4x^2 ))  =((4x^2 +4x+1)/(4x^4 +8x^3 +8x^2 +4x+1)) ⇒  ⇒cosθ =+^− (√((4x^2 +4x+1)/(4x^4 +8x^3 +8x^2 +4x+1)))  sinθ=+^− (√(1−cos^2 θ))

1+tan2θ=1cos2θcos2θ=11+tan2θ=11+4x2(x+1)2(2x+1)2=(2x+1)2(2x+1)2+4x2(x+1)2=4x2+4x+14x2+4x+1+4x2(x2+2x+1)=4x2+4x+14x2+4x+1+4x4+8x3+4x2=4x2+4x+14x4+8x3+8x2+4x+1cosθ=+4x2+4x+14x4+8x3+8x2+4x+1sinθ=+1cos2θ

Answered by Frix last updated on 29/Apr/24

c=(1/( (√(t^2 +1))))∧s=(t/( (√(t^2 +1))))  ⇒  cos θ =((2x+1)/(2x^2 +2x+1))  sin θ =((2x(x+1))/(2x^2 +2x+1))

c=1t2+1s=tt2+1cosθ=2x+12x2+2x+1sinθ=2x(x+1)2x2+2x+1

Answered by lepuissantcedricjunior last updated on 03/May/24

tan(𝛉)=((2x(x+1))/(2x+1))  or calculons sin𝛉 et cos𝛉  on a  tan𝛉=((sin𝛉)/(cos𝛉))=((2x(1+x))/(2x+1))  =>((sin^2 𝛉)/(1−sin^2 𝛉))=[((2x(1+x))/(2x+1))]^2   =>sin^2 𝛉[4x^2 +8x^2 +4x^4 +4x^2 +4x+1]=(([2x(x+1)]^2 )/)  sin^2 𝛉=(([2x(1+x)]^2 )/((2x+1)^2 +[2x(1+x)^2 ))  =>sin𝛉=∓((2x(1+x))/( (√((2x+1)^2 +[2x(x+1)]^2 ))))  =>cos𝛉=∓((2x+1)/( (√((2x+1)^2 +[2x(1+x)]^2 ))))  ........le puissant Dr...................

tan(θ)=2x(x+1)2x+1orcalculonssinθetcosθonatanθ=sinθcosθ=2x(1+x)2x+1=>sin2θ1sin2θ=[2x(1+x)2x+1]2=>sin2θ[4x2+8x2+4x4+4x2+4x+1]=[2x(x+1)]2sin2θ=[2x(1+x)]2(2x+1)2+[2x(1+x)2=>sinθ=2x(1+x)(2x+1)2+[2x(x+1)]2=>cosθ=2x+1(2x+1)2+[2x(1+x)]2........lepuissantDr...................

Terms of Service

Privacy Policy

Contact: info@tinkutara.com