All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 206899 by MATHEMATICSAM last updated on 29/Apr/24
Iftanθ=2x(x+1)2x+1thenfindsinθandcosθ.
Answered by mathzup last updated on 29/Apr/24
1+tan2θ=1cos2θ⇒cos2θ=11+tan2θ=11+4x2(x+1)2(2x+1)2=(2x+1)2(2x+1)2+4x2(x+1)2=4x2+4x+14x2+4x+1+4x2(x2+2x+1)=4x2+4x+14x2+4x+1+4x4+8x3+4x2=4x2+4x+14x4+8x3+8x2+4x+1⇒⇒cosθ=+−4x2+4x+14x4+8x3+8x2+4x+1sinθ=+−1−cos2θ
Answered by Frix last updated on 29/Apr/24
c=1t2+1∧s=tt2+1⇒cosθ=2x+12x2+2x+1sinθ=2x(x+1)2x2+2x+1
Answered by lepuissantcedricjunior last updated on 03/May/24
tan(θ)=2x(x+1)2x+1orcalculonssinθetcosθonatanθ=sinθcosθ=2x(1+x)2x+1=>sin2θ1−sin2θ=[2x(1+x)2x+1]2=>sin2θ[4x2+8x2+4x4+4x2+4x+1]=[2x(x+1)]2sin2θ=[2x(1+x)]2(2x+1)2+[2x(1+x)2=>sinθ=∓2x(1+x)(2x+1)2+[2x(x+1)]2=>cosθ=∓2x+1(2x+1)2+[2x(1+x)]2........lepuissantDr...................
Terms of Service
Privacy Policy
Contact: info@tinkutara.com