Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 20693 by Tinkutara last updated on 31/Aug/17

Integers 1, 2, 3, ...., n, where n > 2, are  written on a board. Two numbers m, k  such that 1 < m < n, 1 < k < n are  removed and the average of the  remaining numbers is found to be 17.  What is the maximum sum of the two  removed numbers?

$$\mathrm{Integers}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:....,\:{n},\:\mathrm{where}\:{n}\:>\:\mathrm{2},\:\mathrm{are} \\ $$ $$\mathrm{written}\:\mathrm{on}\:\mathrm{a}\:\mathrm{board}.\:\mathrm{Two}\:\mathrm{numbers}\:{m},\:{k} \\ $$ $$\mathrm{such}\:\mathrm{that}\:\mathrm{1}\:<\:{m}\:<\:{n},\:\mathrm{1}\:<\:{k}\:<\:{n}\:\mathrm{are} \\ $$ $$\mathrm{removed}\:\mathrm{and}\:\mathrm{the}\:\mathrm{average}\:\mathrm{of}\:\mathrm{the} \\ $$ $$\mathrm{remaining}\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{found}\:\mathrm{to}\:\mathrm{be}\:\mathrm{17}. \\ $$ $$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two} \\ $$ $$\mathrm{removed}\:\mathrm{numbers}? \\ $$

Answered by ajfour last updated on 31/Aug/17

(m+k)_(maximum) = 51  ((n(n+1))/2)−(m+k)=17(n−2)  ⇒   m+k=((n(n+1))/2)−17(n−2)≤ 2n−2        first let us see      (n^2 /2)+(n/2)−17n+34−2n+2 ≤ 0  ⇒  n^2 −37n+72 ≤ 0      (n−((37)/2))^2  ≤ (((37)/2))^2 −72     ∣n−((37)/2)∣ ≤ ((1369−288)/4)   ∣n−((37)/2)∣ ≤ (√(270.25))     (≈16.48)  ⇒    n−18.5 ≤ 16.48  or   n=34      m+k = ((n(n+1))/2)−17(n−2)                     =17×35−17×32                     =51 .

$$\left({m}+{k}\right)_{{maximum}} =\:\mathrm{51} \\ $$ $$\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}−\left({m}+{k}\right)=\mathrm{17}\left({n}−\mathrm{2}\right) \\ $$ $$\Rightarrow\:\:\:{m}+{k}=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}−\mathrm{17}\left({n}−\mathrm{2}\right)\leqslant\:\mathrm{2}{n}−\mathrm{2} \\ $$ $$\:\:\:\:\:\:{first}\:{let}\:{us}\:{see} \\ $$ $$\:\:\:\:\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{2}}−\mathrm{17}{n}+\mathrm{34}−\mathrm{2}{n}+\mathrm{2}\:\leqslant\:\mathrm{0} \\ $$ $$\Rightarrow\:\:{n}^{\mathrm{2}} −\mathrm{37}{n}+\mathrm{72}\:\leqslant\:\mathrm{0} \\ $$ $$\:\:\:\:\left({n}−\frac{\mathrm{37}}{\mathrm{2}}\right)^{\mathrm{2}} \:\leqslant\:\left(\frac{\mathrm{37}}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{72} \\ $$ $$\:\:\:\mid{n}−\frac{\mathrm{37}}{\mathrm{2}}\mid\:\leqslant\:\frac{\mathrm{1369}−\mathrm{288}}{\mathrm{4}} \\ $$ $$\:\mid{n}−\frac{\mathrm{37}}{\mathrm{2}}\mid\:\leqslant\:\sqrt{\mathrm{270}.\mathrm{25}}\:\:\:\:\:\left(\approx\mathrm{16}.\mathrm{48}\right) \\ $$ $$\Rightarrow\:\:\:\:{n}−\mathrm{18}.\mathrm{5}\:\leqslant\:\mathrm{16}.\mathrm{48} \\ $$ $${or}\:\:\:{n}=\mathrm{34} \\ $$ $$\:\:\:\:\boldsymbol{{m}}+\boldsymbol{{k}}\:=\:\frac{\boldsymbol{{n}}\left(\boldsymbol{{n}}+\mathrm{1}\right)}{\mathrm{2}}−\mathrm{17}\left(\boldsymbol{{n}}−\mathrm{2}\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{17}×\mathrm{35}−\mathrm{17}×\mathrm{32} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{51}\:. \\ $$

Commented byTinkutara last updated on 01/Sep/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com