Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 206970 by MATHEMATICSAM last updated on 02/May/24

If sinθ = ((m^2  + 2mn)/(m^2  + 2mn + 2n^2 )) then prove  that tanθ = ((m^2  + 2mn)/(2mn + 2n^2 )) .

Ifsinθ=m2+2mnm2+2mn+2n2thenprovethattanθ=m2+2mn2mn+2n2.

Answered by Rasheed.Sindhi last updated on 02/May/24

sinθ = ((m^2  + 2mn)/(m^2  + 2mn + 2n^2 ))  sin^2 θ =( ((m^2  + 2mn)/(m^2  + 2mn + 2n^2 )))^2   1−sin^2 θ=1− (((m^2  + 2mn)^2 )/((m^2  + 2mn + 2n^2 )^2 ))  cos^2 θ=(((m^2  + 2mn + 2n^2 )^2 −(m^2  + 2mn)^2 )/((m^2  + 2mn + 2n^2 )^2 ))   tan^2 θ= ((sin^2 θ )/(cos^2  ))= (((m^2  + 2mn)^2 )/((m^2  + 2mn + 2n^2 )^2 )) × (((m^2  + 2mn + 2n^2 )^2 )/((m^2  + 2mn + 2n^2 )^2 −(m^2  + 2mn)^2 ))  tan^2 θ=(((m^2  + 2mn)^2 )/({(m^2  + 2mn + 2n^2 )−(m^2  + 2mn)}{(m^2  + 2mn + 2n^2 )+(m^2  + 2mn)}))          =(((m^2  + 2mn)^2 )/(2n^2 (2m^2  + 4mn + 2n^2 )))         =(((m^2  + 2mn)^2 )/(4n^2 (m^2  + 2mn + n^2 )))          =(((m^2  + 2mn)^2 )/(4n^2 (m+n)^2 ))  tanθ=±((m(m + 2n))/(2n(m+n)))

sinθ=m2+2mnm2+2mn+2n2sin2θ=(m2+2mnm2+2mn+2n2)21sin2θ=1(m2+2mn)2(m2+2mn+2n2)2cos2θ=(m2+2mn+2n2)2(m2+2mn)2(m2+2mn+2n2)2tan2θ=sin2θcos2=(m2+2mn)2(m2+2mn+2n2)2×(m2+2mn+2n2)2(m2+2mn+2n2)2(m2+2mn)2tan2θ=(m2+2mn)2{(m2+2mn+2n2)(m2+2mn)}{(m2+2mn+2n2)+(m2+2mn)}=(m2+2mn)22n2(2m2+4mn+2n2)=(m2+2mn)24n2(m2+2mn+n2)=(m2+2mn)24n2(m+n)2tanθ=±m(m+2n)2n(m+n)

Answered by Frix last updated on 02/May/24

t=(s/( (√(1−s^2 ))))  s^ =(u/v) ⇒ t=(u/( (√(v^2 −u^2 ))))  u=m^2 +2mn  v=m^2 +2mn+2n^2   t=((m(m+2n))/(2∣(m+n)n∣))

t=s1s2s=uvt=uv2u2u=m2+2mnv=m2+2mn+2n2t=m(m+2n)2(m+n)n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com