All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 206970 by MATHEMATICSAM last updated on 02/May/24
Ifsinθ=m2+2mnm2+2mn+2n2thenprovethattanθ=m2+2mn2mn+2n2.
Answered by Rasheed.Sindhi last updated on 02/May/24
sinθ=m2+2mnm2+2mn+2n2sin2θ=(m2+2mnm2+2mn+2n2)21−sin2θ=1−(m2+2mn)2(m2+2mn+2n2)2cos2θ=(m2+2mn+2n2)2−(m2+2mn)2(m2+2mn+2n2)2tan2θ=sin2θcos2=(m2+2mn)2(m2+2mn+2n2)2×(m2+2mn+2n2)2(m2+2mn+2n2)2−(m2+2mn)2tan2θ=(m2+2mn)2{(m2+2mn+2n2)−(m2+2mn)}{(m2+2mn+2n2)+(m2+2mn)}=(m2+2mn)22n2(2m2+4mn+2n2)=(m2+2mn)24n2(m2+2mn+n2)=(m2+2mn)24n2(m+n)2tanθ=±m(m+2n)2n(m+n)
Answered by Frix last updated on 02/May/24
t=s1−s2s=uv⇒t=uv2−u2u=m2+2mnv=m2+2mn+2n2t=m(m+2n)2∣(m+n)n∣
Terms of Service
Privacy Policy
Contact: info@tinkutara.com