Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 207043 by necx122 last updated on 04/May/24

Solve for the domain and range of f(x) if  f(x) = (√((3x−5)/(x+3)))

Solveforthedomainandrangeoff(x)iff(x)=3x5x+3

Answered by Frix last updated on 04/May/24

1. x+3≠0  x≠−3  2. ((3x−5)/(x+3))≥0  (3x−5<0∧x+3<0)∨(3x−5≥0∧x+3>0)  x<−3∨x≥(5/3) [=domain]  f(x)=y=(√((3x−5)/(x+3))) ⇔ x=−((3y^2 +5)/(y^2 −3))  ⇒ f(x)≥0∧f(x)≠(√3) [=range]

1.x+30x32.3x5x+30(3x5<0x+3<0)(3x50x+3>0)x<3x53[=domain]f(x)=y=3x5x+3x=3y2+5y23f(x)0f(x)3[=range]

Commented by necx122 last updated on 05/May/24

Thank you so much.   Now, for getting the values of the   inequality ((3x−5)/(x+3)) ≥0  when do you decide to use (3x−5≥0 ∧ x+3>0)  and (3x−5 <0 ∧ x+3 <0).  1)Can these 2 inequalities satisfy the  same range of values?  2)How do we choose which to go with?  3)what specific rules are there for  solving rational inequalities?  Thank you so much. I anticipate your  response.

Thankyousomuch.Now,forgettingthevaluesoftheinequality3x5x+30whendoyoudecidetouse(3x50x+3>0)and(3x5<0x+3<0).1)Canthese2inequalitiessatisfythesamerangeofvalues?2)Howdowechoosewhichtogowith?3)whatspecificrulesarethereforsolvingrationalinequalities?Thankyousomuch.Ianticipateyourresponse.

Commented by mr W last updated on 05/May/24

((3x−5)/(x+3))≥0 ⇔ (3x−5)(x+3)≥0 ∧ x+3≠0  it′s easier to treat (3x−5)(x+3)≥0.  we get directly x≤−3 ∨ x≥(5/3).  see diagram below.  for y≥0 ⇒x≤x_1  ∨ x≥x_2   for y≤0 ⇒x_1 ≤ x≤x_2

3x5x+30(3x5)(x+3)0x+30itseasiertotreat(3x5)(x+3)0.wegetdirectlyx3x53.seediagrambelow.fory0xx1xx2fory0x1xx2

Commented by mr W last updated on 05/May/24

Commented by Frix last updated on 05/May/24

((g(x))/(h(x)))≥0 means that either both functions  are >0 or both functions are <0.  [(7/4)>0 and ((−7)/(−4)) is also >0]  h(x)=0 is allowed but h(x)=0 leads to the  undefined (((x))/0).  I wrote (g(x)≥0∧h(x)>0)∨(g(x)<0∧h(x)<0)  where the ∨ means “or” so we get 2 regions

g(x)h(x)0meansthateitherbothfunctionsare>0orbothfunctionsare<0.[74>0and74isalso>0]h(x)=0isallowedbuth(x)=0leadstotheundefined(x)0.Iwrote(g(x)0h(x)>0)(g(x)<0h(x)<0)wherethemeansorsoweget2regions

Terms of Service

Privacy Policy

Contact: info@tinkutara.com