Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 207065 by manxsol last updated on 05/May/24

     f(x)=[cos2x+cos3x][cos4x+cos6x][[cosx+cos5x]  evaluar   f(((2π)/(13)))

f(x)=[cos2x+cos3x][cos4x+cos6x][[cosx+cos5x]evaluarf(2π13)

Answered by Berbere last updated on 06/May/24

4cos(x)cos(5x)cos(2x)cos(3x).[cos(2x)+cos( 3x)]]a2(  8cos((π/(13)))cos(((5π)/(13)))cos(((2π)/(13)))cos(((4π)/(13)))cos(((6π)/(13)))cos(((10π)/(13)))  =f((π/(12)))−8Π_(k=1) ^6 cos(((kπ)/(13)))=−8Σ_(k=7) ^(12) cos(k(π/(13)))  ⇒(Π_(k=1) ^(12) (cos(k(π/(13)))))^(1/2) =(Π_(k=1) ^6 cos(((kπ)/(13))))  =p(z)=Z^(13) −1=Π_(k=0) ^(12) (z−e^((2ikπ)/(13)) )=p(−1)=−2  =−Π_(k=0) ^(12) (1+e^((2ikπ)/(13)) )=−2^(13) Π_(k=0) ^(12) cos(((kπ)/(13))).e^(i12π) =−2  =Π_(k=0) ^(12) cos(k(π/(13)))=(1/2^(12) )⇒f((π/(12)))=−2^3 .(1/2^6 )=−(1/8)

4cos(x)cos(5x)cos(2x)cos(3x).[cos(2x)+cos(3x)]]a2(8cos(π13)cos(5π13)cos(2π13)cos(4π13)cos(6π13)cos(10π13)=f(π12)86k=1cos(kπ13)=812k=7cos(kπ13)(12k=1(cos(kπ13)))12=(6k=1cos(kπ13))=p(z)=Z131=12k=0(ze2ikπ13)=p(1)=2=12k=0(1+e2ikπ13)=21312k=0cos(kπ13).ei12π=2=12k=0cos(kπ13)=1212f(π12)=23.126=18

Commented by manxsol last updated on 07/May/24

  Thank you sir it is complicatedt  wha theory do you need to study tou  nderstand it

Thankyousiritiscomplicatedtwhatheorydoyouneedtostudytounderstandit

Terms of Service

Privacy Policy

Contact: info@tinkutara.com