Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 207082 by SEKRET last updated on 06/May/24

   Let  g(x)  be  the  inverse function   of        −−>    f(x)= x^3 +3x^2 +4x+5      <−−        Evaluate Lim_(n→∞)  4n∙( g(1+(1/n)) −g(1−(2/n)) )=?

Letg(x)betheinversefunctionof>f(x)=x3+3x2+4x+5<EvaluateLimn4n(g(1+1n)g(12n))=?

Commented by Frix last updated on 06/May/24

I get −3

Iget3

Commented by SEKRET last updated on 06/May/24

a) 1       b) 2      c)3       d)4     e) 5

a)1b)2c)3d)4e)5

Commented by Frix last updated on 06/May/24

All given answers are wrong.

Allgivenanswersarewrong.

Commented by Frix last updated on 06/May/24

We don′t even need to find g(x)  f(x)=x^3 +3x^2 +4x+5  f(x)= { ((1+(1/n))),((1−(2/n))) :}  n→∞ ⇒ f(x)=1 ⇒ x=−2  P= (((−2)),(1) )  The slope in P is f′(−2)=4  ⇒  The slope of f^(−1) (x)=g(x) at Q= ((1),((−2)) )  is −(1/4)  ⇒  We can approximate g(x) with the tangent  in Q: y=−((x+7)/4)  y_1 =−((1+(1/n)+7)/4)∧y_2 =((1−(2/n)+7)/4)  4n(y_1 −y_2 )=−3

Wedontevenneedtofindg(x)f(x)=x3+3x2+4x+5f(x)={1+1n12nnf(x)=1x=2P=(21)TheslopeinPisf(2)=4Theslopeoff1(x)=g(x)atQ=(12)is14Wecanapproximateg(x)withthetangentinQ:y=x+74y1=1+1n+74y2=12n+744n(y1y2)=3

Commented by SEKRET last updated on 06/May/24

thank you  sir

thankyousir

Answered by Berbere last updated on 06/May/24

g^3 (x)+3g^2 (x)+4g(x)+5=x  ⇒Σ_(k=1) ^3 g^k (1+(1/n))−g^k (1−(2/n))=(3/n)  a^3 −b^3 =(a−b)(a^2 +b^2 −ab)  a^2 −b^2 =(a−b)(a+b)  ⇒(g(1+(1/n))−g(1−(2/n)))[g^2 (1+(1/n))+g^2 (1−(2/n))−g(1+(1/n))g(1−(2/n))+3(g(1+(1/n))+g(1−(2/n))+4)]_B =(3/n)  4n(g(1+(1/n))−g(1−(2/n)))=((12)/B)  lim_(n→∞) B=g^2 (1)+6g(1)+4  g(1)=a;⇒f(a)=1  ⇒a^3 +3a^2 +4a+5=1  ⇒(a+1)^3 +a+1+2=0⇒a+1=−1⇒a=−2  ⇒B=−4  ⇒4n(g(1+(1/n))−g(1−(2/n))]=((12)/(−4))=−3

g3(x)+3g2(x)+4g(x)+5=x3k=1gk(1+1n)gk(12n)=3na3b3=(ab)(a2+b2ab)a2b2=(ab)(a+b)(g(1+1n)g(12n))[g2(1+1n)+g2(12n)g(1+1n)g(12n)+3(g(1+1n)+g(12n)+4)]B=3n4n(g(1+1n)g(12n))=12BlimnB=g2(1)+6g(1)+4g(1)=a;f(a)=1a3+3a2+4a+5=1(a+1)3+a+1+2=0a+1=1a=2B=44n(g(1+1n)g(12n)]=124=3

Commented by SEKRET last updated on 06/May/24

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com