Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 207096 by Wuji last updated on 06/May/24

for the given system of ODEs, calculate the  eigenvalues and corresponding eigenvectors of the   coefficient matrix  (dx/dt)=2x+y   (dy/dt)=x+2y

forthegivensystemofODEs,calculatetheeigenvaluesandcorrespondingeigenvectorsofthecoefficientmatrixdxdt=2x+ydydt=x+2y

Commented by Wuji last updated on 07/May/24

need a helping hand, please

needahelpinghand,please

Commented by aleks041103 last updated on 07/May/24

the idea is   if   q= ((x),(y) ) and also then  (dq/dt)= (((dx/dt)),((dy/dt)) )  then you can write the linear ODE as  (dq/dt)=M^�  q   where M^�  is the coefficient matrix    ⇒ in this case the coeff matrix is   ((2,1),(1,2) )...  try from here yourself

theideaisifq=(xy)andalsothendqdt=(dx/dtdy/dt)thenyoucanwritethelinearODEasdqdt=M^qwhereM^isthecoefficientmatrixinthiscasethecoeffmatrixis(2112)...tryfromhereyourself

Commented by Wuji last updated on 07/May/24

yes, sir.  thank you so much

yes,sir.thankyousomuch

Answered by mr W last updated on 07/May/24

alternative way:  (i)+(ii):  ((d(x+y))/dt)=3(x+y)  ((d(x+y))/(x+y))=3dt  ⇒ln (x+y)=3t+C  ⇒x+y=2C_1 e^(3t)    ...(I)  (i)−(ii):  ((d(x−y))/dt)=x−y  ((d(x−y))/(x−y))=dt  ⇒ln (x−y)=t+C  ⇒x−y=2C_2 e^t    ...(II)  ⇒x=C_1 e^(3t) +C_2 e^t   ⇒y=C_1 e^(3t) −C_2 e^t

alternativeway:(i)+(ii):d(x+y)dt=3(x+y)d(x+y)x+y=3dtln(x+y)=3t+Cx+y=2C1e3t...(I)(i)(ii):d(xy)dt=xyd(xy)xy=dtln(xy)=t+Cxy=2C2et...(II)x=C1e3t+C2ety=C1e3tC2et

Commented by Wuji last updated on 07/May/24

God bless you, sir

Godblessyou,sir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com