Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 207170 by hardmath last updated on 08/May/24

Find:   ∫_0 ^( 4)  (√(16 − x^2 )) dx = ?

Find:0416x2dx=?

Commented by MM42 last updated on 08/May/24

x=4sinθ⇒dx=4cosθdθ  ∫_0 ^(π/2)  16cos^2 θdθ=∫_0 ^(π/2) 8(1+cos2θ)dθ  =8(θ+(1/2)sin2θ)]_0 ^(π/2)   =4π  ✓

x=4sinθdx=4cosθdθ0π216cos2θdθ=0π28(1+cos2θ)dθ=8(θ+12sin2θ)]0π2=4π

Commented by hardmath last updated on 08/May/24

Answer:  4π

Answer:4π

Commented by MM42 last updated on 08/May/24

★  ∫_0 ^a (√(a^2 −x^2  ))=^(x=asinθ) ∫_0 ^(π/2) a^2 cos^2 θdθ  =(((πa^2 )/4))  ✓

0aa2x2=x=asinθ0π2a2cos2θdθ=(πa24)

Commented by hardmath last updated on 10/May/24

thank you dear professor

thankyoudearprofessor

Answered by Skabetix last updated on 09/May/24

=∫_0 ^4 (√(4^2 −x^2 ))  Or ∫_0 ^a (√(a^2 −x^2  ))dx=(a^2 /4)π  So here ∫_0 ^4 (√(4^2 −x^2 ))dx=(4^2 /4)π=((16)/4)π=4π

=0442x2Or0aa2x2dx=a24πSohere0442x2dx=424π=164π=4π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com