Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 207194 by sniper237 last updated on 09/May/24

Let  x = cos(π/9)   Show that 8x^3 −6x−1=0  Deduce x is not  rational

Letx=cosπ9Showthat8x36x1=0Deducexisnotrational

Answered by Berbere last updated on 09/May/24

cos(3.(π/9))=cos((π/3))=(1/2)  cos(3a)=Re(e^(ia) )^3 =4cos^3 (a)−3cos(a)  ⇒(1/2)=4x^3 −3x⇒8x^3 −6x−1=0  suupose x=(p/q);gcd(p,q)=1;  ⇒8p^3 −6pq^2 −q^3 =0⇔p(8p^2 −6q^2 )=q^3   ⇒p∣q^3 ⇒(gcd(p,q)=1⇒gcd(p,q^3 )=1⇒p=1  ⇒8−6q^2 −q^3 =0⇒q^2 ∣8⇒q∈{1,2} x=1;x=(1/2) impossible  ⇒x∉IQ

cos(3.π9)=cos(π3)=12cos(3a)=Re(eia)3=4cos3(a)3cos(a)12=4x33x8x36x1=0suuposex=pq;gcd(p,q)=1;8p36pq2q3=0p(8p26q2)=q3pq3(gcd(p,q)=1gcd(p,q3)=1p=186q2q3=0q28q{1,2}x=1;x=12impossiblexIQ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com