Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 207320 by BaliramKumar last updated on 11/May/24

Commented by A5T last updated on 11/May/24

19. The remainder when a number is divided by 16  is the same as the remainder when its last  four digits are divided by 16  9100≡12(mod 16) ⇒(b)

19.Theremainderwhenanumberisdividedby16isthesameastheremainderwhenitslastfourdigitsaredividedby16910012(mod16)(b)

Answered by A5T last updated on 11/May/24

18.    6^n ≡^(10) 6;11^n ≡^(10) 1;  9^n ≡^(10) 1 when n=2k;9^n ≡^(10) 9 when n=2k+1  4^n ≡^(10) (−6)^n ≡^(10) 6 when n=2k; 4^n ≡^(10) 4 when n=2k+1  when n=2k: 4^n +6^n +9^n +11^n ≡6+6+1+1≡^(10) 4  n=2k+1: 4^n +6^n +9^n +11^n ≡4+6+9+1≡^(10) 0  ⇒Sum of distinct remainders=0+4=4⇒(b)

18.6n106;11n101;9n101whenn=2k;9n109whenn=2k+14n10(6)n106whenn=2k;4n104whenn=2k+1whenn=2k:4n+6n+9n+11n6+6+1+1104n=2k+1:4n+6n+9n+11n4+6+9+1100Sumofdistinctremainders=0+4=4(b)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com