Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 20733 by Joel577 last updated on 02/Sep/17

Find the volume of the solid of revolution  obtained by revolving area bounded by  x = 4 + 6y − 2y^2 , x = −4, x = 0 about  the y−axis

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solid}\:\mathrm{of}\:\mathrm{revolution} \\ $$$$\mathrm{obtained}\:\mathrm{by}\:\mathrm{revolving}\:\mathrm{area}\:\mathrm{bounded}\:\mathrm{by} \\ $$$${x}\:=\:\mathrm{4}\:+\:\mathrm{6}{y}\:−\:\mathrm{2}{y}^{\mathrm{2}} ,\:{x}\:=\:−\mathrm{4},\:{x}\:=\:\mathrm{0}\:\mathrm{about} \\ $$$$\mathrm{the}\:{y}−\mathrm{axis} \\ $$

Answered by mrW1 last updated on 02/Sep/17

2y^2 −6y−4+x=0  y_(1,2) =((6±(√(36−4×2(−4+x))))/4)  =((3±(√(17−2x)))/2)  Δy=y_1 −y_2 =(√(17−2x))    V=∫_0 ^(−4) 2πxΔydx  =2π∫_0 ^(−4) x(√(17−2x))dx    let t=(√(17−2x))  ⇒x=((17−t^2 )/2)  dx=−tdt  V=2π∫_(√(17)) ^5 ((17−t^2 )/2)×t×(−t)dt  =π∫_(√(17)) ^5 (t^2 −17)t^2 dt  =(π/5)[t^5 ]_(√(17)) ^5 −((17π)/3)[t^3 ]_(√(17)) ^5   =(π/5)(5^5 −17^2 (√(17)))−((17π)/3)(5^3 −17(√(17)))  =(((578)/5)(√(17))−250)(π/3)  ≈237.3

$$\mathrm{2y}^{\mathrm{2}} −\mathrm{6y}−\mathrm{4}+\mathrm{x}=\mathrm{0} \\ $$$$\mathrm{y}_{\mathrm{1},\mathrm{2}} =\frac{\mathrm{6}\pm\sqrt{\mathrm{36}−\mathrm{4}×\mathrm{2}\left(−\mathrm{4}+\mathrm{x}\right)}}{\mathrm{4}} \\ $$$$=\frac{\mathrm{3}\pm\sqrt{\mathrm{17}−\mathrm{2x}}}{\mathrm{2}} \\ $$$$\Delta\mathrm{y}=\mathrm{y}_{\mathrm{1}} −\mathrm{y}_{\mathrm{2}} =\sqrt{\mathrm{17}−\mathrm{2x}} \\ $$$$ \\ $$$$\mathrm{V}=\int_{\mathrm{0}} ^{−\mathrm{4}} \mathrm{2}\pi\mathrm{x}\Delta\mathrm{ydx} \\ $$$$=\mathrm{2}\pi\int_{\mathrm{0}} ^{−\mathrm{4}} \mathrm{x}\sqrt{\mathrm{17}−\mathrm{2x}}\mathrm{dx} \\ $$$$ \\ $$$$\mathrm{let}\:\mathrm{t}=\sqrt{\mathrm{17}−\mathrm{2x}} \\ $$$$\Rightarrow\mathrm{x}=\frac{\mathrm{17}−\mathrm{t}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{dx}=−\mathrm{tdt} \\ $$$$\mathrm{V}=\mathrm{2}\pi\int_{\sqrt{\mathrm{17}}} ^{\mathrm{5}} \frac{\mathrm{17}−\mathrm{t}^{\mathrm{2}} }{\mathrm{2}}×\mathrm{t}×\left(−\mathrm{t}\right)\mathrm{dt} \\ $$$$=\pi\int_{\sqrt{\mathrm{17}}} ^{\mathrm{5}} \left(\mathrm{t}^{\mathrm{2}} −\mathrm{17}\right)\mathrm{t}^{\mathrm{2}} \mathrm{dt} \\ $$$$=\frac{\pi}{\mathrm{5}}\left[\mathrm{t}^{\mathrm{5}} \right]_{\sqrt{\mathrm{17}}} ^{\mathrm{5}} −\frac{\mathrm{17}\pi}{\mathrm{3}}\left[\mathrm{t}^{\mathrm{3}} \right]_{\sqrt{\mathrm{17}}} ^{\mathrm{5}} \\ $$$$=\frac{\pi}{\mathrm{5}}\left(\mathrm{5}^{\mathrm{5}} −\mathrm{17}^{\mathrm{2}} \sqrt{\mathrm{17}}\right)−\frac{\mathrm{17}\pi}{\mathrm{3}}\left(\mathrm{5}^{\mathrm{3}} −\mathrm{17}\sqrt{\mathrm{17}}\right) \\ $$$$=\left(\frac{\mathrm{578}}{\mathrm{5}}\sqrt{\mathrm{17}}−\mathrm{250}\right)\frac{\pi}{\mathrm{3}} \\ $$$$\approx\mathrm{237}.\mathrm{3} \\ $$

Commented by Joel577 last updated on 02/Sep/17

Understood. Thank you very much

$${Understood}.\:{Thank}\:{you}\:{very}\:{much} \\ $$

Commented by mrW1 last updated on 02/Sep/17

Commented by Joel577 last updated on 02/Sep/17

Sir, my book written that V = 2π∫_a ^b  xy dx  What is the difference with Δy ?

$${Sir},\:{my}\:{book}\:{written}\:{that}\:{V}\:=\:\mathrm{2}\pi\underset{{a}} {\overset{{b}} {\int}}\:{xy}\:{dx} \\ $$$${What}\:{is}\:{the}\:{difference}\:{with}\:\Delta{y}\:? \\ $$

Commented by mrW1 last updated on 02/Sep/17

V_1 =2π∫xy_1 dx  V_2 =2π∫x∣y_2 ∣dx  V=V_1 +V_2 =2π∫x(y_1 +∣y_2 ∣)dx=2π∫xΔydx

$$\mathrm{V}_{\mathrm{1}} =\mathrm{2}\pi\int\mathrm{xy}_{\mathrm{1}} \mathrm{dx} \\ $$$$\mathrm{V}_{\mathrm{2}} =\mathrm{2}\pi\int\mathrm{x}\mid\mathrm{y}_{\mathrm{2}} \mid\mathrm{dx} \\ $$$$\mathrm{V}=\mathrm{V}_{\mathrm{1}} +\mathrm{V}_{\mathrm{2}} =\mathrm{2}\pi\int\mathrm{x}\left(\mathrm{y}_{\mathrm{1}} +\mid\mathrm{y}_{\mathrm{2}} \mid\right)\mathrm{dx}=\mathrm{2}\pi\int\mathrm{x}\Delta\mathrm{ydx} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com