Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 207387 by sniper237 last updated on 13/May/24

Let  cardE=n , and  the set of parts  S={(A,B)∈P(E)×P(E) /  A∩B=∅}  Show that  cardS= 3^n

LetcardE=n,andthesetofpartsS={(A,B)P(E)×P(E)/AB=}ShowthatcardS=3n

Answered by Berbere last updated on 13/May/24

if card(A)=k;E=A∪A^−   the number of subset of card=k  in E is  ((n),(k) )  we havd to shoose B in (A^− );card(A^− )=n−k  B∈P(A^− ) card (P(A^− ))=2^(n−k)   (A,B) can bee chosed by Σ_(k=0) ^n  ((n),(k) )2^(n−k) =Σ_(k=0) ^n  ((n),(k) )1^k .2^(n−k) =(1+2)^n =3^n

ifcard(A)=k;E=AAthenumberofsubsetofcard=kinEis(nk)wehavdtoshooseBin(A);card(A)=nkBP(A)card(P(A))=2nk(A,B)canbeechosedbynk=0(nk)2nk=nk=0(nk)1k.2nk=(1+2)n=3n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com