All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 207594 by MATHEMATICSAM last updated on 19/May/24
xcosθa+ysinθb=1xsinθ−ycosθ=a2sin2θ+b2cos2θEliminateθ.
Answered by Frix last updated on 20/May/24
t=tanθandtransforminggivesA.xa+tyb=t2+1[⇒xa+tyb⩾0]B.tx−y=a2t2+b2[⇒tx⩾y]Squaring[mightintroducefalsesolutions!]andtransforminggivest2+2bxya(y2−b2)t+b2(x2−a2)a2(y2−b2)=0[⇒y≠±b]t2−2xyx2−a2t+y2−b2x2−a2=0[⇒x≠±a]Subtractingandsolvinggivest=−bx2−ay2−ab(a−b)2axyNowinsertthisinAorBI′mnotsureifthisisavalidsolution.ThegivenequationsdefinetwolinesinR2witha,b,θasconstantsorratherstrangeobjectsinR3witha,basconstants...
Answered by mr W last updated on 20/May/24
xacosθ+ybsinθ=1cosαcosθ+sinαsinθ=1x2a2+y2b2cos(θ−α)=1x2a2+y2b2θ=α+cos−11x2a2+y2b2θ=cos−1xax2a2+y2b2+cos−11x2a2+y2b2⇒sinθ=yb(x2a2+y2b2)+x1−x2a2−y2b2a(x2a2+y2b2)⇒cosθ=xa(x2a2+y2b2)−y1−x2a2−y2b2b(x2a2+y2b2)insertthisintoequation(ii)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com