Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 207594 by MATHEMATICSAM last updated on 19/May/24

((xcosθ)/a) + ((ysinθ)/b) = 1  xsinθ − ycosθ = (√(a^2 sin^2 θ + b^2 cos^2 θ))  Eliminate θ.

xcosθa+ysinθb=1xsinθycosθ=a2sin2θ+b2cos2θEliminateθ.

Answered by Frix last updated on 20/May/24

t=tan θ and transforming gives  A. (x/a)+((ty)/b)=(√(t^2 +1))        [⇒ (x/a)+((ty)/b)≥0]  B. tx−y=(√(a^2 t^2 +b^2 ))     [⇒ tx≥y]  Squaring [might introduce false solutions!]  and transforming gives  t^2 +((2bxy)/(a(y^2 −b^2 )))t+((b^2 (x^2 −a^2 ))/(a^2 (y^2 −b^2 )))=0     [⇒ y≠±b]  t^2 −((2xy)/(x^2 −a^2 ))t+((y^2 −b^2 )/(x^2 −a^2 ))=0                  [⇒ x≠±a]  Subtracting and solving gives  t=−((bx^2 −ay^2 −ab(a−b))/(2axy))  Now insert this in A or B    I′m not sure if this is a valid solution. The  given equations define two lines in R^2  with  a, b, θ as constants or rather strange objects  in R^3  with a, b as constants...

t=tanθandtransforminggivesA.xa+tyb=t2+1[xa+tyb0]B.txy=a2t2+b2[txy]Squaring[mightintroducefalsesolutions!]andtransforminggivest2+2bxya(y2b2)t+b2(x2a2)a2(y2b2)=0[y±b]t22xyx2a2t+y2b2x2a2=0[x±a]Subtractingandsolvinggivest=bx2ay2ab(ab)2axyNowinsertthisinAorBImnotsureifthisisavalidsolution.ThegivenequationsdefinetwolinesinR2witha,b,θasconstantsorratherstrangeobjectsinR3witha,basconstants...

Answered by mr W last updated on 20/May/24

(x/a) cos θ+(y/b) sin θ=1  cos α cos θ+sin α sin θ=(1/( (√((x^2 /a^2 )+(y^2 /b^2 )))))  cos (θ−α)=(1/( (√((x^2 /a^2 )+(y^2 /b^2 )))))  θ=α+cos^(−1) (1/( (√((x^2 /a^2 )+(y^2 /b^2 )))))  θ=cos^(−1) (x/(a(√((x^2 /a^2 )+(y^2 /b^2 )))))+cos^(−1) (1/( (√((x^2 /a^2 )+(y^2 /b^2 )))))  ⇒sin θ=(y/( b((x^2 /a^2 )+(y^2 /b^2 ))))+((x(√(1−(x^2 /a^2 )−(y^2 /b^2 ))))/( a((x^2 /a^2 )+(y^2 /b^2 ))))  ⇒cos θ=(x/( a((x^2 /a^2 )+(y^2 /b^2 ))))−((y(√(1−(x^2 /a^2 )−(y^2 /b^2 ))))/( b((x^2 /a^2 )+(y^2 /b^2 ))))  insert this into equation (ii)

xacosθ+ybsinθ=1cosαcosθ+sinαsinθ=1x2a2+y2b2cos(θα)=1x2a2+y2b2θ=α+cos11x2a2+y2b2θ=cos1xax2a2+y2b2+cos11x2a2+y2b2sinθ=yb(x2a2+y2b2)+x1x2a2y2b2a(x2a2+y2b2)cosθ=xa(x2a2+y2b2)y1x2a2y2b2b(x2a2+y2b2)insertthisintoequation(ii)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com