Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 207615 by mr W last updated on 21/May/24

 { ((u_(n+1) =((au_n +b)/(cu_n +d)))),((u_0 =k)) :}  find u_n  in terms of n.

{un+1=aun+bcun+du0=kfindunintermsofn.

Commented by mr W last updated on 20/May/24

an old question Q207477

anoldquestionQ207477

Answered by mr W last updated on 21/May/24

u_(n+1) =((au_n +b)/(cu_n +d))  let u_n =(A_n /B_n )  (A_(n+1) /B_(n+1) )=((a×(A_n /B_n )+b)/(c×(A_n /B_n )+d))=((aA_n +bB_n )/(cA_n +dB_n ))   { ((A_(n+1) =aA_n +bB_n )),((B_(n+1) =cA_n +dB_n )) :}    (see also  Q118849 for solution of  such recurrence equation systems)    let A_(n+1) +pB_(n+1) =q(A_n +pB_n )  A_(n+1) +p(cA_n +dB_n )=q(A_n +pB_n )  A_(n+1) =(q−pc)A_n +p(q−d)B_n ≡aA_n +bB_n    { ((q−pc=a   ...(i))),((p(q−d)=b   ...(ii))) :}  p(a+pc−d)=b  ⇒cp^2 +(a−d)p−b=0  p=((−a+d±(√((a−d)^2 +4cb)))/(2c))  q=a+cp=((a+d±(√((a−d)^2 +4cb)))/2)  (we can take any of the two pairs of  p and q)    A_n +pB_n =q(A_(n−1) +pB_(n−1) )=...=(A_0 +pB_0 )q^n   A_(n+1) =aA_n +bB_n =aA_n +(b/p)[(A_0 +pB_0 )q^n −A_n ]  ⇒A_(n+1) =(a−(b/p))A_n +(b/p)(A_0 +pB_0 )q^n   let A_n =T_n +sq^n   T_(n+1) +sq^(n+1) =(a−(b/p))(T_n +sq^n )+(b/p)(A_0 +pB_0 )q^n   T_(n+1) =(a−(b/p))T_n +[s(a−(b/p)−q)+(b/p)(A_0 +pB_0 )]q^n   set s(a−(b/p)−q)+(b/p)(A_0 +pB_0 )=0  ⇒s=((b(A_0 +pB_0 ))/(b+(q−a)p))  ⇒(s/B_0 )=((b(u_0 +p))/(b+(q−a)p))  T_(n+1) =(a−(b/p))T_n   ⇒T_n =(a−(b/p))T_(n−1) =...=(a−(b/p))^n T_0 =(a−(b/p))^n (A_0 −s)  ⇒A_n =(a−(b/p))^n (A_0 −s)+sq^n   B_n =(((A_0 +pB_0 )q^n −A_n )/p)  B_n =(((A_0 +pB_0 )q^n −(a−(b/p))^n (A_0 −s)−sq^n )/p)  ⇒B_n =(((A_0 +pB_0 −s)q^n −(a−(b/p))^n (A_0 −s))/p)  ⇒u_n =(A_n /B_n )=((−pB_n +(A_0 +pB_0 )q^n )/B_n )=−p+(((A_0 +pB_0 )q^n )/B_n )  ⇒u_n =−p+((p(A_0 +pB_0 )q^n )/((A_0 +pB_0 −s)q^n −(a−(b/p))^n (A_0 −s)))  ⇒u_n =−p+((p(u_0 +p)q^n )/((u_0 +p−(s/B_0 ))q^n −(a−(b/p))^n (u_0 −(s/B_0 ))))  ⇒u_n =−p+((p(u_0 +p)q^n )/([u_0 +p−((b(u_0 +p))/(b+(q−a)p))]q^n −(a−(b/p))^n [u_0 −((b(u_0 +p))/(b+(q−a)p))]))  ⇒u_n =−p+((pq^n )/([1−(b/(b+(q−a)p))]q^n −(a−(b/p))^n [(u_0 /(u_0 +p))−(b/(b+(q−a)p))]))  ⇒u_n =((pq^n )/([1−(b/(b+(q−a)p))]q^n −k(a−(b/p))^n ))−p  with k=(u_0 /(u_0 +p))−(b/(b+(q−a)p))=constant    example:  u_(n+1) =((9u_n −2)/(−3u_n +4))  u_0 =1  a=9, b=−2, c=−3, d=4  p=((−9+4−(√((9−4)^2 +4×(−3)×(−2))))/(2×(−3)))=2  q=((9+4−(√((9−4)^2 +4×(−3)×(−2))))/2)=3  u_n =((2×3^n )/([1−((−2)/(−2+(3−9)2))]3^n −k(9−((−2)/2))^n ))−2       =((7×3^n )/( 3^(n+1) −((7k)/2)×10^n ))−2      =((7×3^n )/( 3^(n+1) +k_1 10^n ))−2=((7×3^(n+1) )/( 3^(n+2) −2×10^n ))−2  k_1 =−((7k)/2)=−(7/2)[(1/(1+2))−((−2)/(−2+(3−9)2))]=−(2/3)  this is the same as Wolfram Alpha  gets, see below.

un+1=aun+bcun+dletun=AnBnAn+1Bn+1=a×AnBn+bc×AnBn+d=aAn+bBncAn+dBn{An+1=aAn+bBnBn+1=cAn+dBn(seealsoQ118849forsolutionofsuchrecurrenceequationsystems)letAn+1+pBn+1=q(An+pBn)An+1+p(cAn+dBn)=q(An+pBn)An+1=(qpc)An+p(qd)BnaAn+bBn{qpc=a...(i)p(qd)=b...(ii)p(a+pcd)=bcp2+(ad)pb=0p=a+d±(ad)2+4cb2cq=a+cp=a+d±(ad)2+4cb2(wecantakeanyofthetwopairsofpandq)An+pBn=q(An1+pBn1)=...=(A0+pB0)qnAn+1=aAn+bBn=aAn+bp[(A0+pB0)qnAn]An+1=(abp)An+bp(A0+pB0)qnletAn=Tn+sqnTn+1+sqn+1=(abp)(Tn+sqn)+bp(A0+pB0)qnTn+1=(abp)Tn+[s(abpq)+bp(A0+pB0)]qnsets(abpq)+bp(A0+pB0)=0s=b(A0+pB0)b+(qa)psB0=b(u0+p)b+(qa)pTn+1=(abp)TnTn=(abp)Tn1=...=(abp)nT0=(abp)n(A0s)An=(abp)n(A0s)+sqnBn=(A0+pB0)qnAnpBn=(A0+pB0)qn(abp)n(A0s)sqnpBn=(A0+pB0s)qn(abp)n(A0s)pun=AnBn=pBn+(A0+pB0)qnBn=p+(A0+pB0)qnBnun=p+p(A0+pB0)qn(A0+pB0s)qn(abp)n(A0s)un=p+p(u0+p)qn(u0+psB0)qn(abp)n(u0sB0)un=p+p(u0+p)qn[u0+pb(u0+p)b+(qa)p]qn(abp)n[u0b(u0+p)b+(qa)p]un=p+pqn[1bb+(qa)p]qn(abp)n[u0u0+pbb+(qa)p]un=pqn[1bb+(qa)p]qnk(abp)npwithk=u0u0+pbb+(qa)p=constantexample:un+1=9un23un+4u0=1a=9,b=2,c=3,d=4p=9+4(94)2+4×(3)×(2)2×(3)=2q=9+4(94)2+4×(3)×(2)2=3un=2×3n[122+(39)2]3nk(922)n2=7×3n3n+17k2×10n2=7×3n3n+1+k110n2=7×3n+13n+22×10n2k1=7k2=72[11+222+(39)2]=23thisisthesameasWolframAlphagets,seebelow.

Commented by AliJumaa last updated on 21/May/24

i just want to tell you that super man cant hold  your intellegint   your relly a super mathmatition   i cant bellive that thing you hqve wrote   all thanks to you best profesorr

ijustwanttotellyouthatsupermancantholdyourintellegintyourrellyasupermathmatitionicantbellivethatthingyouhqvewroteallthankstoyoubestprofesorr

Commented by mr W last updated on 21/May/24

thanks sirs!  i tried different ways, and then  i came to the idea with u_n =(A_n /B_n )  and saw that the question becomes  a currence equation system which  i once solved in an old post, the  rest upon here is then clear.  that′s the way how i got to my  solution.

thankssirs!itrieddifferentways,andthenicametotheideawithun=AnBnandsawthatthequestionbecomesacurrenceequationsystemwhichioncesolvedinanoldpost,therestuponhereisthenclear.thatsthewayhowigottomysolution.

Commented by Tinku Tara last updated on 21/May/24

Great solution. even wolfram alpha pro is  not able to come up with steps

Greatsolution.evenwolframalphaproisnotabletocomeupwithsteps

Commented by Tawa11 last updated on 21/May/24

Great sir

Greatsir

Commented by mr W last updated on 21/May/24

Commented by sniper237 last updated on 21/May/24

Great Sir  Obstains  that p and q are the   solutions of  the equation  ((ax+b)/(cx+d))=x   And V_n =((U_n −p)/(U_n −q)) is geometric

GreatSirObstainsthatpandqarethesolutionsoftheequationax+bcx+d=xAndVn=UnpUnqisgeometric

Commented by mr W last updated on 23/May/24

alternative way to solve  u_n =(A_n /B_n )=((aA_(n−1) +bB_(n−1) )/(cA_(n−1) +dB_(n−1) ))   [(A_n ),(B_n ) ]= [(a,b),(c,d) ] [(A_(n−1) ),(B_(n−1) ) ]              =...= [(a,b),(c,d) ]^n  [(A_0 ),(B_0 ) ]  example:   [(A_n ),(B_n ) ]= [(9,(−2)),((−3),4) ]^n  [(1),(1) ]  =(1/7) [((3^n +6×10^n ),(2×3^n −2×10^n )),((3×3^n −3×10^n ),(6×3^n +10^n )) ] [(1),(1) ]  A_n =(1/7)(3^(n+1) +4×10^n )  B_n =(1/7)(3^(n+2) −2×10^n )  ⇒u_n =((3^(n+1) +4×10^n )/(3^(n+2) −2×10^n ))            =((7×3^(n+1) )/(3^(n+2) −2×10^n ))−2 ✓

alternativewaytosolveun=AnBn=aAn1+bBn1cAn1+dBn1[AnBn]=[abcd][An1Bn1]=...=[abcd]n[A0B0]example:[AnBn]=[9234]n[11]=17[3n+6×10n2×3n2×10n3×3n3×10n6×3n+10n][11]An=17(3n+1+4×10n)Bn=17(3n+22×10n)un=3n+1+4×10n3n+22×10n=7×3n+13n+22×10n2

Commented by sniper237 last updated on 21/May/24

it isn′t the  usual product   it′s  an action product

itisnttheusualproductitsanactionproduct

Commented by Tawa11 last updated on 21/Jun/24

Ohh.

Ohh.

Answered by mr W last updated on 23/May/24

an other solution  (see also Q81871)    u_(n+1) =((au_n +b)/(cu_n +d))  u_(n+1) +p=((au_n +b)/(cu_n +d))+p=(((a+cp)u_n +(b+dp))/(cu_n +d))  u_(n+1) +q=((au_n +b)/(cu_n +d))+q=(((a+cq)u_n +(b+dq))/(cu_n +d))  ((u_(n+1) +p)/(u_(n+1) +q))=((a+cp)/(a+cq))×((u_n +((b+dp)/(a+cp)))/(u_n +((b+dq)/(a+cq))))  set p=((b+dp)/(a+cp)), ⇒ cp^2 +(a−d)p−b=0  set q=((b+dq)/(a+cq)), ⇒ cq^2 +(a−d)q−b=0  i.e. p, q are roots of cx^2 +(a−d)x−b=0  ⇒p, q=((−a+d±(√((a−d)^2 +4bc)))/(2c))  ((u_(n+1) +p)/(u_(n+1) +q))=((a+cp)/(a+cq))×((u_n +p)/(u_n +q))=λ(((u_n +p)/(u_n +q)))  ⇒((u_n +p)/(u_n +q))=λ^n ×((u_0 +p)/(u_0 +q))=λ^n k  ⇒(kλ^n −1)u_n =p−kqλ^n   ⇒u_n =((p−kqλ^n )/(kλ^n −1))=((p−q)/(kλ^n −1))−q  with k=((u_0 +p)/(u_0 +q)), λ=((a+cp)/(a+cq))    example:  u_(n+1) =((9u_n −2)/(−3u_n +4)), u_0 =1  a=9, b=−2, c=−3, d=4  p, q=((−9+4±(√((9−4)^2 +4(−2)(−3))))/(2(−3)))=−(1/3), 2  λ=((a+cp)/(a+cq))=((9−3×(−(1/3)))/(9−3×2))=((10)/3)  k=((u_0 +p)/(u_0 +q))=((1−(1/3))/(1+2))=(2/9)  u_n =((−(1/3)−2)/((2/9)×(((10)/3))^n −1))−2      =((7×3^(n+1) )/(3^(n+2) −2×10^n ))−2

anothersolution(seealsoQ81871)un+1=aun+bcun+dun+1+p=aun+bcun+d+p=(a+cp)un+(b+dp)cun+dun+1+q=aun+bcun+d+q=(a+cq)un+(b+dq)cun+dun+1+pun+1+q=a+cpa+cq×un+b+dpa+cpun+b+dqa+cqsetp=b+dpa+cp,cp2+(ad)pb=0setq=b+dqa+cq,cq2+(ad)qb=0i.e.p,qarerootsofcx2+(ad)xb=0p,q=a+d±(ad)2+4bc2cun+1+pun+1+q=a+cpa+cq×un+pun+q=λ(un+pun+q)un+pun+q=λn×u0+pu0+q=λnk(kλn1)un=pkqλnun=pkqλnkλn1=pqkλn1qwithk=u0+pu0+q,λ=a+cpa+cqexample:un+1=9un23un+4,u0=1a=9,b=2,c=3,d=4p,q=9+4±(94)2+4(2)(3)2(3)=13,2λ=a+cpa+cq=93×(13)93×2=103k=u0+pu0+q=1131+2=29un=13229×(103)n12=7×3n+13n+22×10n2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com