Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 207648 by SANOGO last updated on 22/May/24

f_n (x)=(n/(1+x^2 ))sin((x/n))  /x∈[0,1] ,  n≥1  calculer lim n→∞∫_0 ^1 f_n (x)dx

fn(x)=n1+x2sin(xn)/x[0,1],n1calculerlimn01fn(x)dx

Commented by mr W last updated on 22/May/24

why don′t you use +∞ instead of   +oo?  why don′t you use lim_(n→+∞)  instead of   lim n→+oo?

whydontyouuse+insteadof+oo?whydontyouuselimn+insteadoflimn+oo?

Answered by Berbere last updated on 22/May/24

lemma sin(x)≤x;∀x≥0  sin(x)=∫_0 ^x cos(t)dt≤∫_0 ^x 1dt=x  f_n (x)≤(n/(1+x^2 )).(x/n)=(x/(1+x^2 ))=G(x)  G(x) integrable over [0,1]  lim_(n→∞) ∫_0 ^1 (n/(1+x^2 )).sin((x/n))dx=∫_0 ^1 lim_(n→∞) .((nsin((x/n)))/(1+x^2 ))dx  =∫_0 ^1 ((sin((x/n)).x)/((x/n)(1+x^2 )))dx;lim_(x→0) ((sin(a))/a)=1  =∫_0 ^1 (x/(1+x^2 ))dx=[((ln(1+x^2 ))/2)]_0 ^1 =((ln(2))/2)=ln((√2))

lemmasin(x)x;x0sin(x)=0xcos(t)dt0x1dt=xfn(x)n1+x2.xn=x1+x2=G(x)G(x)integrableover[0,1]limn01n1+x2.sin(xn)dx=01limn.nsin(xn)1+x2dx=01sin(xn).xxn(1+x2)dx;limx0sin(a)a=1=01x1+x2dx=[ln(1+x2)2]01=ln(2)2=ln(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com