Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 207661 by efronzo1 last updated on 22/May/24

 P=1+(1/3)+(1/5)+(1/7)+...+(1/(2023))   Q= (1/(1×2023))+(1/(3×2021))+(1/(5×2019))+...+(1/(2023×1))    (P/Q)=?

P=1+13+15+17+...+12023Q=11×2023+13×2021+15×2019+...+12023×1PQ=?

Answered by Frix last updated on 22/May/24

P(m)=Σ_(k=1) ^((m+1)/2)  (1/(2k−1)) ∧m=2n−1  P(2n−1)=Σ_(k=1) ^n  (1/(2k−1)) =H_(2n−1) −(H_(n−1) /2)  Q(m)=Σ_(k=1) ^((m+1)/2) (1/((2k−1)(m+1−(2k−1))) ∧m=2n−1  Q(2n−1)=Σ_(k=1) ^n  (1/((2k−1)(2n−2k+1))) =  =(1/(2n))(Σ_(k=1) ^n  (1/(2k−1)) +Σ_(k=1) ^n  (1/(2n−2k+1)))=       [Σ_(k=1) ^n  (1/(2k−1)) =Σ_(k=1) ^n  (1/(2n−2k+1))]  =(1/n)(H_(2n−1) −(H_(n−1) /2))  ⇒  ((P(2n−1))/(Q(2n−1)))=n  ⇒  ((P(m))/(Q(m)))=((m+1)/2)  m=2023 ⇒ Answer is 1012

P(m)=m+12k=112k1m=2n1P(2n1)=nk=112k1=H2n1Hn12Q(m)=m+12k=11(2k1)(m+1(2k1)m=2n1Q(2n1)=nk=11(2k1)(2n2k+1)==12n(nk=112k1+nk=112n2k+1)=[nk=112k1=nk=112n2k+1]=1n(H2n1Hn12)P(2n1)Q(2n1)=nP(m)Q(m)=m+12m=2023Answeris1012

Answered by MM42 last updated on 22/May/24

Q=(1/(2024))[(1+(1/(2023)))+((1/3)+(1/(2021)))+((1/5)+(1/(2019)))+...+((1/(2019))+(1/5))+((1/(2021))+(1/3))+((1/(2023))+1)]  =(1/(2024))[2p]=(p/(1012))  ⇒(P/Q)=1012 ✓

Q=12024[(1+12023)+(13+12021)+(15+12019)+...+(12019+15)+(12021+13)+(12023+1)]=12024[2p]=p1012PQ=1012

Terms of Service

Privacy Policy

Contact: info@tinkutara.com