All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 207661 by efronzo1 last updated on 22/May/24
P=1+13+15+17+...+12023Q=11×2023+13×2021+15×2019+...+12023×1PQ=?
Answered by Frix last updated on 22/May/24
P(m)=∑m+12k=112k−1∧m=2n−1P(2n−1)=∑nk=112k−1=H2n−1−Hn−12Q(m)=∑m+12k=11(2k−1)(m+1−(2k−1)∧m=2n−1Q(2n−1)=∑nk=11(2k−1)(2n−2k+1)==12n(∑nk=112k−1+∑nk=112n−2k+1)=[∑nk=112k−1=∑nk=112n−2k+1]=1n(H2n−1−Hn−12)⇒P(2n−1)Q(2n−1)=n⇒P(m)Q(m)=m+12m=2023⇒Answeris1012
Answered by MM42 last updated on 22/May/24
Q=12024[(1+12023)+(13+12021)+(15+12019)+...+(12019+15)+(12021+13)+(12023+1)]=12024[2p]=p1012⇒PQ=1012✓
Terms of Service
Privacy Policy
Contact: info@tinkutara.com