Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 20777 by Tinkutara last updated on 02/Sep/17

In the figure shown, mass ′m′ is  placed on the inclined surface of a  wedge of mass M. All the surfaces  are smooth. Find the acceleration of  the wedge.

$${In}\:{the}\:{figure}\:{shown},\:{mass}\:'{m}'\:{is} \\ $$$${placed}\:{on}\:{the}\:{inclined}\:{surface}\:{of}\:{a} \\ $$$${wedge}\:{of}\:{mass}\:{M}.\:{All}\:{the}\:{surfaces} \\ $$$${are}\:{smooth}.\:{Find}\:{the}\:{acceleration}\:{of} \\ $$$${the}\:{wedge}. \\ $$

Commented by Tinkutara last updated on 02/Sep/17

Commented by ajfour last updated on 02/Sep/17

Nsin θ=MA   ..(i)  mgcos θ−N=mAsin θ  or  using (i)  mgcos θsin θ−MA=mAsin^2 θ    ⇒   A=((mgsin 𝛉cos 𝛉)/(M+msin^2 𝛉)) .

$${N}\mathrm{sin}\:\theta={MA}\:\:\:..\left({i}\right) \\ $$$${mg}\mathrm{cos}\:\theta−{N}={mA}\mathrm{sin}\:\theta \\ $$$${or}\:\:{using}\:\left({i}\right) \\ $$$${mg}\mathrm{cos}\:\theta\mathrm{sin}\:\theta−{MA}={mA}\mathrm{sin}\:^{\mathrm{2}} \theta \\ $$$$\:\:\Rightarrow\:\:\:\boldsymbol{{A}}=\frac{\boldsymbol{{mg}}\mathrm{sin}\:\boldsymbol{\theta}\mathrm{cos}\:\boldsymbol{\theta}}{\boldsymbol{{M}}+\boldsymbol{{m}}\mathrm{sin}\:^{\mathrm{2}} \boldsymbol{\theta}}\:. \\ $$

Commented by Tinkutara last updated on 02/Sep/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Commented by mrW1 last updated on 03/Sep/17

what is the result if the friction coe. of all  surfaces is μ?

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{result}\:\mathrm{if}\:\mathrm{the}\:\mathrm{friction}\:\mathrm{coe}.\:\mathrm{of}\:\mathrm{all} \\ $$$$\mathrm{surfaces}\:\mathrm{is}\:\mu? \\ $$

Commented by ajfour last updated on 03/Sep/17

Commented by ajfour last updated on 03/Sep/17

mgcos θ−N=mAsin θ             ...(i)  Nsin θ−μNcos θ−μR=MA  ..(ii)  R=Mg+Ncos θ+μNsin θ    ...(iii)  solving for A we get,  A=(((1−μ^2 )mgcos θsin θ−2μmgcos^2 θ−μMg)/(M+(1−μ^2 )msin^2 θ)) .

$${mg}\mathrm{cos}\:\theta−{N}={mA}\mathrm{sin}\:\theta\:\:\:\:\:\:\:\:\:\:\:\:\:...\left({i}\right) \\ $$$${N}\mathrm{sin}\:\theta−\mu{N}\mathrm{cos}\:\theta−\mu{R}={MA}\:\:..\left({ii}\right) \\ $$$${R}={Mg}+{N}\mathrm{cos}\:\theta+\mu{N}\mathrm{sin}\:\theta\:\:\:\:...\left({iii}\right) \\ $$$${solving}\:{for}\:{A}\:{we}\:{get}, \\ $$$$\boldsymbol{{A}}=\frac{\left(\mathrm{1}−\mu^{\mathrm{2}} \right){mg}\mathrm{cos}\:\theta\mathrm{sin}\:\theta−\mathrm{2}\mu{mg}\mathrm{cos}\:^{\mathrm{2}} \theta−\mu{Mg}}{{M}+\left(\mathrm{1}−\mu^{\mathrm{2}} \right){m}\mathrm{sin}\:^{\mathrm{2}} \theta}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com