Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 207920 by efronzo1 last updated on 30/May/24

    Given p,q ,r and s real positive     numbers such that        { ((p^2 +q^2 = r^2 +s^2 )),((p^2 +s^2 −ps = q^2 +r^2 +qr.)) :}    Find  ((pq+rs)/(ps+qr)) .

Givenp,q,randsrealpositivenumberssuchthat{p2+q2=r2+s2p2+s2ps=q2+r2+qr.Findpq+rsps+qr.

Commented by Frix last updated on 30/May/24

answer is ((√3)/2)  p=a  q=((a(2b−1)(√3))/3)  r=((a(2−b)(√3))/3)  s=ab  a>0∧(1/2)<b<2 ⇔ p, q, r, s >0

answeris32p=aq=a(2b1)33r=a(2b)33s=aba>012<b<2p,q,r,s>0

Commented by efronzo1 last updated on 30/May/24

 how to get s=ab , q=((a(2b−1)(√3))/3)   r=((a(2−b)(√3))/3)

howtogets=ab,q=a(2b1)33r=a(2b)33

Answered by Frix last updated on 30/May/24

p=a  q=αa  r=βa  s=ab   { ((α^2 +1=b^2 +β^2 )),((b^2 −b+1=α^2 +αβ+β^2 )) :}  Subtracting & solving ⇒ β=((2b^2 −b−2α^2 )/α)  Insert above and factorise  (α^2 −b^2 )(α^2 −((4b^2 )/3)+((4b)/3)−(1/3))=0  ⇒  1. α=−b∧β=1       p=a∧q=−ab∧r=a∧s=ab  2. α=b∧β=−1       p=a∧q=ab∧r=−a∧s=ab  3. α=(((1−2b)(√3))/3)∧β=(((b−2)(√3))/3)       p=a∧q=((a(1−2b)(√3))/3)∧r=((a(b−2)(√3))/3)∧s=ab  4. α=(((2b−1)(√3))/3)∧β=(((2−b)(√3))/3)       p=a∧q=((a(2b−1)(√3))/3)∧r=((a(2−b)(√3))/3)∧s=ab  But p, q, r, s >0 ⇒ a, b >0  and only 4. leads to valid solutions  ⇒ ((pq+rs)/(ps+qr))=((√3)/2)

p=aq=αar=βas=ab{α2+1=b2+β2b2b+1=α2+αβ+β2Subtracting&solvingβ=2b2b2α2αInsertaboveandfactorise(α2b2)(α24b23+4b313)=01.α=bβ=1p=aq=abr=as=ab2.α=bβ=1p=aq=abr=as=ab3.α=(12b)33β=(b2)33p=aq=a(12b)33r=a(b2)33s=ab4.α=(2b1)33β=(2b)33p=aq=a(2b1)33r=a(2b)33s=abButp,q,r,s>0a,b>0andonly4.leadstovalidsolutionspq+rsps+qr=32

Answered by mr W last updated on 30/May/24

p^2 +q^2 =r^2 +s^2 =a^2 , say  ⇒p=a cos α, q=a sin α  ⇒r=a cos β, s=a sin β  with 0≤α, β≤(π/2)  if only positive numbers  a^2 cos^2  α+a^2 sin^2  β−a^2 cos α sin β=a^2 sin^2  α+a^2 cos^2  β+a^2 sin α cos β  cos 2α−cos 2β=sin (α+β)  cos^2  2α+cos^2  2β−2 cos 2α cos 2β=sin^2  (α+β)  2−(sin 2α+sin 2β)^2 +2 sin 2α sin 2β−2 cos 2α cos 2β=sin^2  (α+β)  2−(sin 2α+sin 2β)^2 −2 cos 2(α+β)=sin^2  (α+β)  2−(sin 2α+sin 2β)^2 −2+4 sin^2  (α+β)=sin^2  (α+β)  (sin 2α+sin 2β)^2 =3 sin^2  (α+β)  ⇒sin 2α+sin 2β=±(√3) sin (α+β)    ((pq+rs)/(ps+qr))  =((cos α sin α+cos β sin β)/(cos α sin β+sin α cos β))  =((sin 2α+sin 2β)/(2 sin (α+β)))  =±((√3)/2) ✓   (only ((√3)/2) if only positive numbers)

p2+q2=r2+s2=a2,sayp=acosα,q=asinαr=acosβ,s=asinβwith0α,βπ2ifonlypositivenumbersa2cos2α+a2sin2βa2cosαsinβ=a2sin2α+a2cos2β+a2sinαcosβcos2αcos2β=sin(α+β)cos22α+cos22β2cos2αcos2β=sin2(α+β)2(sin2α+sin2β)2+2sin2αsin2β2cos2αcos2β=sin2(α+β)2(sin2α+sin2β)22cos2(α+β)=sin2(α+β)2(sin2α+sin2β)22+4sin2(α+β)=sin2(α+β)(sin2α+sin2β)2=3sin2(α+β)sin2α+sin2β=±3sin(α+β)pq+rsps+qr=cosαsinα+cosβsinβcosαsinβ+sinαcosβ=sin2α+sin2β2sin(α+β)=±32(only32ifonlypositivenumbers)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com