All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 208280 by Shrodinger last updated on 10/Jun/24
L=∫04πln(cosx)dx
Answered by Berbere last updated on 10/Jun/24
=∫0π4ln(cos(x)sin(x).sin(x)cos(x))dx2=12∫0π4ln(cot(x))dx+12∫0π4ln(sin(2x)2)dxtan(x)→t;2x→t=−12∫01ln(t)1+t2dt+14∫0π2ln(sin(y))dy−ln(2)2.π4=−12∫01∑n⩾0(−1)nln(t)t2ndt+14.−π2ln(2)−πln(2)8=−12∑n⩾0−1(2n+1)2−πln(2)4;G=(−1)n(2n+1)2=β(−1)Catalaneconstant=12G−πln(2)4
Commented by Shrodinger last updated on 11/Jun/24
thankssir..
SirItis∫04πln(cosx)dx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com