Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 208280 by Shrodinger last updated on 10/Jun/24

L=∫_0 ^(4/π) ln(cosx)dx

L=04πln(cosx)dx

Answered by Berbere last updated on 10/Jun/24

=∫_0 ^(π/4) ((ln(((cos(x))/(sin(x))).sin(x)cos(x))dx)/2)=(1/2)∫_0 ^(π/4) ln(cot(x))dx+(1/2)∫_0 ^(π/4) ln(((sin(2x))/2))dx  tan(x)→t;2x→t  =−(1/2)∫_0 ^1 ((ln(t))/(1+t^2 ))dt+(1/4)∫_0 ^(π/2) ln(sin(y))dy−((ln(2))/2).(π/4)  =−(1/2)∫_0 ^1 Σ_(n≥0) (−1)^n ln(t)t^(2n) dt+(1/4).−(π/2)ln(2)−((πln(2))/8)  =−(1/2)Σ_(n≥0) −(1/((2n+1)^2 ))−((πln(2))/4);G=(((−1)^n )/((2n+1)^2 ))=β(−1) Catalane constant  =(1/2)G−((πln(2))/4)

=0π4ln(cos(x)sin(x).sin(x)cos(x))dx2=120π4ln(cot(x))dx+120π4ln(sin(2x)2)dxtan(x)t;2xt=1201ln(t)1+t2dt+140π2ln(sin(y))dyln(2)2.π4=1201n0(1)nln(t)t2ndt+14.π2ln(2)πln(2)8=12n01(2n+1)2πln(2)4;G=(1)n(2n+1)2=β(1)Catalaneconstant=12Gπln(2)4

Commented by Shrodinger last updated on 11/Jun/24

thanks sir..

thankssir..

Commented by Shrodinger last updated on 11/Jun/24

Sir It is ∫_0 ^(4/π) ln(cosx)dx

SirItis04πln(cosx)dx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com