Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 208303 by Simurdiera last updated on 10/Jun/24

Resolver  (∂^2 u/∂y^2 ) − x^2 u = xe^(4y)

Resolver2uy2x2u=xe4y

Answered by aleks041103 last updated on 12/Jun/24

u=X(x)Y(y)  ⇒XY ′′−x^2 XY=x e^(4y)   ((Y ′′)/Y)=(x/X) (e^(4y) /Y)+x^2   left side is function of y only  right side has dependence on x  ⇒((Y ′′)/Y)=(x/X) (e^(4y) /Y)+x^2 =c=const.  Y=(1/a)e^(4y) ⇒c=16  ⇒16=((ax)/X)+x^2 ⇒X=((ax)/(16−x^2 ))  ⇒u=XY=((xe^(4y) )/(16−x^2 ))  the PDE is linear  ⇒u=((xe^(4y) )/(16−x^2 ))+w  where  (∂^2 w/∂y^2 ) − x^2 w = 0  ⇒w=f(x)e^(xy) +g(x)e^(−xy)   For Cauchy problem:  w(x,0)=w_0 (x) and (∂w/∂y)(x,0)=v_0 (x)  we can solve for f and g.  Therefore this is the general solution.  ⇒u(x,y)= ((xe^(4y) )/(16−x^2 )) + f(x)e^(xy) +g(x)e^(−xy)

u=X(x)Y(y)XYx2XY=xe4yYY=xXe4yY+x2leftsideisfunctionofyonlyrightsidehasdependenceonxYY=xXe4yY+x2=c=const.Y=1ae4yc=1616=axX+x2X=ax16x2u=XY=xe4y16x2thePDEislinearu=xe4y16x2+wwhere2wy2x2w=0w=f(x)exy+g(x)exyForCauchyproblem:w(x,0)=w0(x)andwy(x,0)=v0(x)wecansolveforfandg.Thereforethisisthegeneralsolution.u(x,y)=xe4y16x2+f(x)exy+g(x)exy

Terms of Service

Privacy Policy

Contact: info@tinkutara.com