Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 208306 by SANOGO last updated on 10/Jun/24

calcul / lim n→+∞ ∫_0 ^(+∞)  f_n (x)   f_n (x)= arctan((x/n))e^(−x) dx

calcul/limn+0+fn(x)fn(x)=arctan(xn)exdx

Commented by SANOGO last updated on 11/Jun/24

thank you

thankyou

Answered by Berbere last updated on 10/Jun/24

f_n (x)≤(π/2)e^(−x)  x→(π/2)e^(−x)  integrable over R+  lim_(n→∞) tan^(−1) ((x/n))e^(−x) =0  ⇒lim_(n→∞) ∫_0 ^∞ f_n (x)=∫_0 ^∞ lim_(n→∞) tan^(−1) ((x/n))e^(−x) dx=∫_0 ^∞ 0dx=0

fn(x)π2exxπ2exintegrableoverR+limtann1(xn)ex=0limn0fn(x)=0limtann1(xn)exdx=00dx=0

Answered by mathzup last updated on 10/Jun/24

arctanu)^′ =(1/(1+u^2 ))=Σ_(n=0) ^∞ (−1)^n  u^(2n)   ⇒arctanu=Σ_(n=0) ^∞ (((−1)^n u^(2n+1) )/(2n+1)) +c (c=0)  =u−(u^3 /3)+(u^5 /5)−... ⇒ arctanu≤u  ∀u>0  ⇒∣f_n (x)∣≤(x/n) e^(−x)  ⇒  ∫_0 ^∞  ∣f_n (x)∣dx≤(1/n)∫_0 ^∞  x e^(−x)  dx  but ∫_0 ^∞  xe^(−x) dx=Γ(2)=1!=1 ⇒  ∫_0 ^∞ ∣f_n (x)∣dx≤(1/n) →0  (n→+∞) ⇒  lim_(n→+∞) ∫_0 ^∞ f_n (x)dx =0

arctanu)=11+u2=n=0(1)nu2narctanu=n=0(1)nu2n+12n+1+c(c=0)=uu33+u55...arctanuuu>0⇒∣fn(x)∣⩽xnex0fn(x)dx1n0xexdxbut0xexdx=Γ(2)=1!=10fn(x)dx1n0(n+)limn+0fn(x)dx=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com