All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 208306 by SANOGO last updated on 10/Jun/24
calcul/limn→+∞∫0+∞fn(x)fn(x)=arctan(xn)e−xdx
Commented by SANOGO last updated on 11/Jun/24
thankyou
Answered by Berbere last updated on 10/Jun/24
fn(x)⩽π2e−xx→π2e−xintegrableoverR+limtann→∞−1(xn)e−x=0⇒limn→∞∫0∞fn(x)=∫0∞limtann→∞−1(xn)e−xdx=∫0∞0dx=0
Answered by mathzup last updated on 10/Jun/24
arctanu)′=11+u2=∑n=0∞(−1)nu2n⇒arctanu=∑n=0∞(−1)nu2n+12n+1+c(c=0)=u−u33+u55−...⇒arctanu⩽u∀u>0⇒∣fn(x)∣⩽xne−x⇒∫0∞∣fn(x)∣dx⩽1n∫0∞xe−xdxbut∫0∞xe−xdx=Γ(2)=1!=1⇒∫0∞∣fn(x)∣dx⩽1n→0(n→+∞)⇒limn→+∞∫0∞fn(x)dx=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com