Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 208316 by Tawa11 last updated on 11/Jun/24

∫ ((x^2   +  3)/(x^2 (x  +  1)(x^2   +  1)^2 )) dx

x2+3x2(x+1)(x2+1)2dx

Answered by Frix last updated on 11/Jun/24

∫((x^2 +3)/(x^2 (x+1)(x^2 +1)^2 ))dx=  =−3∫(dx/x)+                    =−3ln ∣x∣ −  +3∫(dx/x^2 )+                        −(3/x)+  +∫(dx/(x+1))+                        +ln ∣x+1∣ +  +∫((2x)/(x^2 +1))dx−                +ln (x^2 +1) −  −(5/2)∫(dx/(x^2 +1))+                −(5/2)tan^(−1)  x −  +(1/2)∫((x^2 +2x−1)/((x^2 +1)^2 ))dx     −((x+1)/(2(x^2 +1)))=  =−(((7x^2 +x+6))/(2x(x^2 +1)))+ln ∣(((x+1)(x^2 +1))/x^3 )∣ −(5/2)tan^(−1)  x +C

x2+3x2(x+1)(x2+1)2dx==3dxx+=3lnx+3dxx2+3x++dxx+1++lnx+1++2xx2+1dx+ln(x2+1)52dxx2+1+52tan1x+12x2+2x1(x2+1)2dxx+12(x2+1)==(7x2+x+6)2x(x2+1)+ln(x+1)(x2+1)x352tan1x+C

Commented by Frix last updated on 11/Jun/24

(1/2)∫((x^2 +2x−1)/((x^2 +1)^2 ))dx =^(t=tan^(−1)  x)   =∫((1/2)+cos t sin t −cos^2  t)dt=  =−((√2)/2)∫cos (2t+(π/4)) dt=−((√2)/4)sin (2t+(π/4)) =  =((x^2 −2x−1)/(4(x^2 +1)))=(1/4)−((x+1)/(2(x^2 +1)))=−((x+1)/(2(x^2 +1)))+C

12x2+2x1(x2+1)2dx=t=tan1x=(12+costsintcos2t)dt==22cos(2t+π4)dt=24sin(2t+π4)==x22x14(x2+1)=14x+12(x2+1)=x+12(x2+1)+C

Commented by Tawa11 last updated on 11/Jun/24

Thanks sir.  I really appreciate sir.

Thankssir.Ireallyappreciatesir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com