Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 208318 by SANOGO last updated on 11/Jun/24

calcul   lim n→+∞  ∫_0 ^(+∞)  ((cos(nx))/((nx+1)(1+x^2 ) ))dx

calcullimn+0+cos(nx)(nx+1)(1+x2)dx

Answered by Berbere last updated on 11/Jun/24

∣∫_0 ^(+∞) ((cos(nx))/((1+nx)(1+x^2 )))dx∣≤∫_0 ^∞ ((∣cos(nx)∣)/((1+nx)(1+x^2 )))dx≤∫_0 ^∞ (dx/((1+nx)(1+x^2 )))  x→(1/x^2 )⇒∫_0 ^∞ ((xdx)/((1+x^2 )(n+x)))=∫_0 ^∞ ((−n)/(1+n^2 )).(1/((n+x)))+((((nx)/(1+n^2 ))+(1/(n^2 +1)))/((1+x^2 )))dx  (1/(n^2 +1))∫_0 ^∞ −(n/(n+x))+((nx+1)/(x^2 +1))dx=(1/(n^2 +1))[−nln(n+x)+(n/2)ln(x^2 +1)+tan^(−1) (x)]_0 ^∞   =(n/(n^2 +1))[ln(((√(x^2 +1))/(x+n)))]_0 ^∞ +(π/(2(n^2 +1)))  =−((nln(n))/(n^2 +1))+(π/(2(n^2 +1)))  ∣∫_0 ^∞ ((cos(nx))/((nx+1)(1+x^2 )))dx∣≤(1/(n^2 +1))((π/2)−nln(n))=(π/(2(n^2 +1)))−(((ln(n))/n)/(1+(1/n^2 )))→^(n→∞) 0

0+cos(nx)(1+nx)(1+x2)dx∣⩽0cos(nx)(1+nx)(1+x2)dx0dx(1+nx)(1+x2)x1x20xdx(1+x2)(n+x)=0n1+n2.1(n+x)+nx1+n2+1n2+1(1+x2)dx1n2+10nn+x+nx+1x2+1dx=1n2+1[nln(n+x)+n2ln(x2+1)+tan1(x)]0=nn2+1[ln(x2+1x+n)]0+π2(n2+1)=nln(n)n2+1+π2(n2+1)0cos(nx)(nx+1)(1+x2)dx∣⩽1n2+1(π2nln(n))=π2(n2+1)ln(n)n1+1n2n0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com