Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 208381 by hardmath last updated on 14/Jun/24

g(x) = lnx^2   f(x) = ((x + 25))^(1/3)   Find:   lim_(x→e)  (f(g(x)) = ?

g(x)=lnx2f(x)=x+253Find:limxe(f(g(x))=?

Answered by A5T last updated on 14/Jun/24

f(g(x))=((ln(x^2 )+25))^(1/3)   ⇒lim_(x→e) f(g(x))=((ln(e^2 )+25))^(1/3) =((27))^(1/3) =3

f(g(x))=ln(x2)+253limfxe(g(x))=ln(e2)+253=273=3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com