Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 208692 by Ghisom last updated on 21/Jun/24

∫_0 ^(π/2) xln sin x dx=?

π/20xlnsinxdx=?

Answered by Berbere last updated on 21/Jun/24

ln(sin(x))=−ln(2)−Σ_(k≥1) ((cos(2kx))/k)  proof ln(sin(x))=Re(ln(sin(x))  ln(sin(x)=ln(((e^(ix) −e^(−ix) )/(2i)))  ln(sin(x))=ln(e^(ix) (1−e^(−2ix) ))−ln(2)==ix−ln(2)−Σ(e^(−2kix) /k)  Reln(sin(x))=−ln(2)−Σ((cos(2kx))/k)  ∫_0 ^(π/2) xln(sin(x))dx=∫_0 ^(π/2) x(−ln(2)−Σ((cos(2kx))/k))  =[−(x^2 /2)ln(2)]_0 ^(π/2) −Σ_(k≥1) (1/k)∫_0 ^(π/2) xcos(2kx)dx^�   ∫xcos(2kx)dx=x.((sin(2kx))/(2k))+((cos(2kx))/(4k^2 ))  .−(π^2 /8)ln(2)−Σ_k (1/k)[((sin(2kx))/(2k))+((cos(2kx))/(4k^2 ))]_0 ^(π/2)   =−(π^2 /8)ln(2)−Σ(((−1)^k −1)/(4k^3 ))  =−(π^3 /8)ln(2)+Σ_(k≥0) (1/(2(2k+1)^3 ))=−(π^3 /8)ln(2)+(7/(16))ζ(3)

ln(sin(x))=ln(2)k1cos(2kx)kproofln(sin(x))=Re(ln(sin(x))ln(sin(x)=ln(eixeix2i)ln(sin(x))=ln(eix(1e2ix))ln(2)==ixln(2)Σe2kixkReln(sin(x))=ln(2)Σcos(2kx)k0π2xln(sin(x))dx=0π2x(ln(2)Σcos(2kx)k)=[x22ln(2)]0π2k11k0π2xcos(2kx)dx¯xcos(2kx)dx=x.sin(2kx)2k+cos(2kx)4k2.π28ln(2)k1k[sin(2kx)2k+cos(2kx)4k2]0π2=π28ln(2)Σ(1)k14k3=π38ln(2)+k012(2k+1)3=π38ln(2)+716ζ(3)

Commented by Ghisom last updated on 22/Jun/24

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com