All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 208692 by Ghisom last updated on 21/Jun/24
∫π/20xlnsinxdx=?
Answered by Berbere last updated on 21/Jun/24
ln(sin(x))=−ln(2)−∑k⩾1cos(2kx)kproofln(sin(x))=Re(ln(sin(x))ln(sin(x)=ln(eix−e−ix2i)ln(sin(x))=ln(eix(1−e−2ix))−ln(2)==ix−ln(2)−Σe−2kixkReln(sin(x))=−ln(2)−Σcos(2kx)k∫0π2xln(sin(x))dx=∫0π2x(−ln(2)−Σcos(2kx)k)=[−x22ln(2)]0π2−∑k⩾11k∫0π2xcos(2kx)dx¯∫xcos(2kx)dx=x.sin(2kx)2k+cos(2kx)4k2.−π28ln(2)−∑k1k[sin(2kx)2k+cos(2kx)4k2]0π2=−π28ln(2)−Σ(−1)k−14k3=−π38ln(2)+∑k⩾012(2k+1)3=−π38ln(2)+716ζ(3)
Commented by Ghisom last updated on 22/Jun/24
thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com