All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 208871 by Shrodinger last updated on 26/Jun/24
L=∫014−3x4+5xdx
Answered by Sutrisno last updated on 26/Jun/24
misal4−3x4+5x=p→x=−4p2+45p2+3→dx=−64p(5p2+3)2dpL=∫113p.−64p(5p2+3)2dpL=∫113−64p2(5p2+3)2dpmisal5p=3tanθ→dp=3sec2θ5dθ∙sinθ=5p5p2+3∙cosθ=3p5p2+3L=−64∫(35tanθ)2(3tan2θ+3)2.3sec2θ5dθL=−643155∫tan2θsec2θ(sec2θ)2dθL=−643155∫tan2θsec2θdθL=−643155∫sin2θdθL=−643155∫1−cos2θ2dθL=−323155∫1−cos2θdθL=−323155(θ−12sin2θ)L=−323155(θ−sinθcosθ)L=−323155(tan−1(5u3)−5u5u2+3.35u2+3)L=−323155(tan−1(5u3)−15u5u2+3)113L=−323155(tan−1(533)−tan−1(53)+1815)
Answered by mathzup last updated on 26/Jun/24
let4−3x4+5x=t⇒4−3x4+5x=t2⇒4−3x=4t2+5t2x⇔4−4t2=(5t2+3)x⇔x=4−4t23+5t2anddxdt=−8t(3+5t2)−(4−4t2)10t(5t2+3)2=−24t−40t3−40t+40t3(5t2+3)2=−64t(5t2+3)2⇒I=∫113t(−64t(5t2+3)2)dt=645∫1315t2+3−3(5t2+3)2dt=645∫131dt5t2+3−3.645∫131dt(5t2+3)2but∫131dt5t2+3=15∫131dtt2+(35)2dt(t=35u)=1535∫133535du35(1+u2)=1553{arctan(35−1335}∫131dt(5t2+3)2=125∫131dt(t2+35)2(t=35tanθ)=125×35∫arctan(1353)arctan(53)1+tan2θ(35)2(1+tan2θ)=125×35×(53)2∫dθ1+tan2θnowitseasy....
Answered by Frix last updated on 26/Jun/24
∫4−3x4+5xdx=t=3(4+5x)5(4−3x)641575∫dt(t2+1)2==321575(tt2+1+tan−1t)==(4−3x)(4+5x)5+321575tan−13(4+5x)5(4−3x)+C⇒L=−15+321575tan−1157
Terms of Service
Privacy Policy
Contact: info@tinkutara.com