Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 208871 by Shrodinger last updated on 26/Jun/24

L=∫_0 ^1 (√((4−3x)/(4+5x)))dx

L=0143x4+5xdx

Answered by Sutrisno last updated on 26/Jun/24

misal  (√((4−3x)/(4+5x)))=p→x=((−4p^2 +4)/(5p^2 +3))→dx=((−64p)/((5p^2 +3)^2 ))dp  L=∫_1 ^(1/3) p.((−64p)/((5p^2 +3)^2 ))dp  L=∫_1 ^(1/3) ((−64p^2 )/((5p^2 +3)^2 ))dp  misal (√5)p=(√3)tanθ→dp=(((√3)sec^2 θ)/( (√5)))dθ  •sinθ=(((√5)p)/( (√(5p^2 +3))))  •cosθ=(((√3)p)/( (√(5p^2 +3))))  L=−64∫(((((√3)/( (√5)))tanθ)^2 )/((3tan^2 θ+3)^2 )).(((√3)sec^2 θ)/( (√5)))dθ  L=−((64(√3))/(15(√5)))∫((tan^2 θsec^2 θ)/((sec^2 θ)^2 ))dθ  L=−((64(√3))/(15(√5)))∫((tan^2 θ)/(sec^2 θ))dθ  L=−((64(√3))/(15(√5)))∫sin^2 θdθ  L=−((64(√3))/(15(√5)))∫((1−cos2θ)/2)dθ  L=−((32(√3))/(15(√5)))∫1−cos2θdθ  L=−((32(√3))/(15(√5)))(θ−(1/2)sin2θ)  L=−((32(√3))/(15(√5)))(θ−sinθcosθ)  L=−((32(√3))/(15(√5)))(tan^(−1) ((((√5)u)/( (√3))))−(((√5)u)/( (√(5u^2 +3)))).((√3)/( (√(5u^2 +3)))))  L=−((32(√3))/(15(√5)))(tan^(−1) ((((√5)u)/( (√3))))−(((√(15))u)/( 5u^2 +3)))_1 ^(1/3)   L=−((32(√3))/(15(√5)))(tan^(−1) (((√5)/( 3(√3))))−tan^(−1) (((√5)/( (√3))))+(1/8)(√(15)))

misal43x4+5x=px=4p2+45p2+3dx=64p(5p2+3)2dpL=113p.64p(5p2+3)2dpL=11364p2(5p2+3)2dpmisal5p=3tanθdp=3sec2θ5dθsinθ=5p5p2+3cosθ=3p5p2+3L=64(35tanθ)2(3tan2θ+3)2.3sec2θ5dθL=643155tan2θsec2θ(sec2θ)2dθL=643155tan2θsec2θdθL=643155sin2θdθL=6431551cos2θ2dθL=3231551cos2θdθL=323155(θ12sin2θ)L=323155(θsinθcosθ)L=323155(tan1(5u3)5u5u2+3.35u2+3)L=323155(tan1(5u3)15u5u2+3)113L=323155(tan1(533)tan1(53)+1815)

Answered by mathzup last updated on 26/Jun/24

let (√((4−3x)/(4+5x)))=t ⇒((4−3x)/(4+5x))=t^2  ⇒  4−3x=4t^2 +5t^2 x ⇔4−4t^2 =(5t^2 +3)x ⇔  x=((4−4t^2 )/(3+5t^2 )) and (dx/dt)=((−8t(3+5t^2 )−(4−4t^2 )10t)/((5t^2 +3)^2 ))  =((−24t−40t^3 −40t+40t^3 )/((5t^2 +3)^2 ))=((−64t)/((5t^2 +3)^2 ))  ⇒I=∫_1 ^(1/3) t(((−64t)/((5t^2 +3)^2 )))dt  =((64)/5)∫_(1/3) ^1   ((5t^2 +3−3)/((5t^2 +3)^2 ))dt  =((64)/5)∫_(1/3) ^1 (dt/(5t^2 +3)) −((3.64)/5)∫_(1/3) ^1 (dt/((5t^2 +3)^2 ))  but ∫_(1/3) ^1 (dt/(5t^2 +3))=(1/5)∫_(1/3) ^1 (dt/(t^2 +((√(3/5)))^2 ))dt (t=(√(3/5))u)  =(1/5)(√(3/5))∫_((1/3)(√(3/5))) ^(√(3/5))    (du/((3/5)(1+u^2 )))  =(1/5)(√(5/3)){arctan((√(3/5))−(1/3)(√(3/5))}  ∫_(1/3) ^1 (dt/((5t^2 +3)^2 ))=(1/(25))∫_(1/3) ^1 (dt/((t^2 +(3/5))^2 )) (t=(√(3/5))tanθ)  =(1/(25))×(√(3/5))∫_(arctan((1/3)(√(5/3)))) ^(arctan((√(5/3)))) ((1+tan^2 θ)/(((3/5))^2 (1+tan^2 θ)))  =(1/(25))×(√(3/5))×((5/3))^2 ∫  (dθ/(1+tan^2 θ))  now its easy....

let43x4+5x=t43x4+5x=t243x=4t2+5t2x44t2=(5t2+3)xx=44t23+5t2anddxdt=8t(3+5t2)(44t2)10t(5t2+3)2=24t40t340t+40t3(5t2+3)2=64t(5t2+3)2I=113t(64t(5t2+3)2)dt=6451315t2+33(5t2+3)2dt=645131dt5t2+33.645131dt(5t2+3)2but131dt5t2+3=15131dtt2+(35)2dt(t=35u)=1535133535du35(1+u2)=1553{arctan(351335}131dt(5t2+3)2=125131dt(t2+35)2(t=35tanθ)=125×35arctan(1353)arctan(53)1+tan2θ(35)2(1+tan2θ)=125×35×(53)2dθ1+tan2θnowitseasy....

Answered by Frix last updated on 26/Jun/24

∫(√((4−3x)/(4+5x)))dx =^(t=(√((3(4+5x))/(5(4−3x)))))  ((64(√(15)))/(75))∫(dt/((t^2 +1)^2 ))=  =((32(√(15)))/(75))((t/(t^2 +1))+tan^(−1)  t)=  =((√((4−3x)(4+5x)))/5)+((32(√(15)))/(75))tan^(−1)  (√((3(4+5x))/(5(4−3x)))) +C  ⇒  L=−(1/5)+((32(√(15)))/(75))tan^(−1)  ((√(15))/7)

43x4+5xdx=t=3(4+5x)5(43x)641575dt(t2+1)2==321575(tt2+1+tan1t)==(43x)(4+5x)5+321575tan13(4+5x)5(43x)+CL=15+321575tan1157

Terms of Service

Privacy Policy

Contact: info@tinkutara.com