Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 2089 by Yozzi last updated on 01/Nov/15

If x∈[0,0.5π], show that sinx≥x−(1/6)x^3 .  Hence prove that  (1/(3000))≤∫_0 ^(1/10) (x^2 /((1−x+sinx)^2 ))dx≤(2/(5999)).

$${If}\:{x}\in\left[\mathrm{0},\mathrm{0}.\mathrm{5}\pi\right],\:{show}\:{that}\:{sinx}\geqslant{x}−\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} . \\ $$$${Hence}\:{prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{3000}}\leqslant\int_{\mathrm{0}} ^{\mathrm{1}/\mathrm{10}} \frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}+{sinx}\right)^{\mathrm{2}} }{dx}\leqslant\frac{\mathrm{2}}{\mathrm{5999}}. \\ $$

Commented by prakash jain last updated on 02/Nov/15

sin x≥x−(x^3 /6)  0≤((x/(1−x+sin x)))^2 ≤((x/(1−x+x−(x^3 /6))))^2   ∫((36x^2 )/((6−x^3 )^2 ))dx  6−x^3 =u⇒−3x^2 dx=du  ∫ ((−12du)/u^2 )=((12)/u)=((12)/(6−x^3 ))=((12000)/(5999))−2=(2/(5999))  sin x≤x  x^2 ≤((x/(1−x+sin x)))^2   ∫x^2 dx=[(x^3 /3)]_0 ^(1/10) =(1/(3000))  Not a complete proof but an outline of approach.

$$\mathrm{sin}\:{x}\geqslant{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}} \\ $$$$\mathrm{0}\leqslant\left(\frac{{x}}{\mathrm{1}−{x}+\mathrm{sin}\:{x}}\right)^{\mathrm{2}} \leqslant\left(\frac{{x}}{\mathrm{1}−{x}+{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}}\right)^{\mathrm{2}} \\ $$$$\int\frac{\mathrm{36}{x}^{\mathrm{2}} }{\left(\mathrm{6}−{x}^{\mathrm{3}} \right)^{\mathrm{2}} }{dx} \\ $$$$\mathrm{6}−{x}^{\mathrm{3}} ={u}\Rightarrow−\mathrm{3}{x}^{\mathrm{2}} {dx}={du} \\ $$$$\int\:\frac{−\mathrm{12}{du}}{{u}^{\mathrm{2}} }=\frac{\mathrm{12}}{{u}}=\frac{\mathrm{12}}{\mathrm{6}−{x}^{\mathrm{3}} }=\frac{\mathrm{12000}}{\mathrm{5999}}−\mathrm{2}=\frac{\mathrm{2}}{\mathrm{5999}} \\ $$$$\mathrm{sin}\:{x}\leqslant{x} \\ $$$${x}^{\mathrm{2}} \leqslant\left(\frac{{x}}{\mathrm{1}−{x}+\mathrm{sin}\:{x}}\right)^{\mathrm{2}} \\ $$$$\int{x}^{\mathrm{2}} {dx}=\left[\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\right]_{\mathrm{0}} ^{\mathrm{1}/\mathrm{10}} =\frac{\mathrm{1}}{\mathrm{3000}} \\ $$$$\mathrm{Not}\:\mathrm{a}\:\mathrm{complete}\:\mathrm{proof}\:\mathrm{but}\:\mathrm{an}\:\mathrm{outline}\:\mathrm{of}\:\mathrm{approach}. \\ $$

Commented by 123456 last updated on 01/Nov/15

x−(x^3 /6)=T_3 (x)  T_n (x)=Σ_(i=0) ^n (d^i f/dx^i )(a)(((x−a)^i )/(i!)),f(x)=sin x

$${x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}=\mathrm{T}_{\mathrm{3}} \left({x}\right) \\ $$$$\mathrm{T}_{{n}} \left({x}\right)=\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{d}^{{i}} {f}}{{dx}^{{i}} }\left({a}\right)\frac{\left({x}−{a}\right)^{{i}} }{{i}!},{f}\left({x}\right)=\mathrm{sin}\:{x} \\ $$

Commented by prakash jain last updated on 02/Nov/15

sin x≥x−(x^3 /(3!)), can be seen from sin x series  expansion.

$$\mathrm{sin}\:{x}\geqslant{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!},\:\mathrm{can}\:\mathrm{be}\:\mathrm{seen}\:\mathrm{from}\:\mathrm{sin}\:{x}\:\mathrm{series} \\ $$$$\mathrm{expansion}. \\ $$

Commented by Yozzi last updated on 02/Nov/15

Thanks!

$${Thanks}!\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com