Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 20891 by Tinkutara last updated on 06/Sep/17

The Figure shows a system consisting  of (i) a ring of outer radius 3R rolling  clockwise without slipping on a  horizontal surface with angular speed  ω and (ii) an inner disc of radius 2R  rotating anti-clockwise with angular  speed ω/2. The ring and disc are  separated by frictionless ball bearing.  The system is in the x-z plane. The  point P on the inner disc is at a distance  R from the origin, where OP makes an  angle 30° with the horizontal. Then  with respect to the horizontal surface  (a) The point O has a linear velocity  3Rωi^∧   (b) The point P has a linear velocity  ((11)/4)Rωi^∧  + ((√3)/4)Rωk^∧

$$\mathrm{The}\:\mathrm{Figure}\:\mathrm{shows}\:\mathrm{a}\:\mathrm{system}\:\mathrm{consisting} \\ $$$$\mathrm{of}\:\left({i}\right)\:\mathrm{a}\:\mathrm{ring}\:\mathrm{of}\:\mathrm{outer}\:\mathrm{radius}\:\mathrm{3}{R}\:\mathrm{rolling} \\ $$$$\mathrm{clockwise}\:\mathrm{without}\:\mathrm{slipping}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{horizontal}\:\mathrm{surface}\:\mathrm{with}\:\mathrm{angular}\:\mathrm{speed} \\ $$$$\omega\:\mathrm{and}\:\left({ii}\right)\:\mathrm{an}\:\mathrm{inner}\:\mathrm{disc}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{2}{R} \\ $$$$\mathrm{rotating}\:\mathrm{anti}-\mathrm{clockwise}\:\mathrm{with}\:\mathrm{angular} \\ $$$$\mathrm{speed}\:\omega/\mathrm{2}.\:\mathrm{The}\:\mathrm{ring}\:\mathrm{and}\:\mathrm{disc}\:\mathrm{are} \\ $$$$\mathrm{separated}\:\mathrm{by}\:\mathrm{frictionless}\:\mathrm{ball}\:\mathrm{bearing}. \\ $$$$\mathrm{The}\:\mathrm{system}\:\mathrm{is}\:\mathrm{in}\:\mathrm{the}\:{x}-{z}\:\mathrm{plane}.\:\mathrm{The} \\ $$$$\mathrm{point}\:{P}\:\mathrm{on}\:\mathrm{the}\:\mathrm{inner}\:\mathrm{disc}\:\mathrm{is}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance} \\ $$$${R}\:\mathrm{from}\:\mathrm{the}\:\mathrm{origin},\:\mathrm{where}\:{OP}\:\mathrm{makes}\:\mathrm{an} \\ $$$$\mathrm{angle}\:\mathrm{30}°\:\mathrm{with}\:\mathrm{the}\:\mathrm{horizontal}.\:\mathrm{Then} \\ $$$$\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{surface} \\ $$$$\left({a}\right)\:\mathrm{The}\:\mathrm{point}\:{O}\:\mathrm{has}\:\mathrm{a}\:\mathrm{linear}\:\mathrm{velocity} \\ $$$$\mathrm{3}{R}\omega\overset{\wedge} {{i}} \\ $$$$\left({b}\right)\:\mathrm{The}\:\mathrm{point}\:{P}\:\mathrm{has}\:\mathrm{a}\:\mathrm{linear}\:\mathrm{velocity} \\ $$$$\frac{\mathrm{11}}{\mathrm{4}}{R}\omega\overset{\wedge} {{i}}\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{R}\omega\overset{\wedge} {{k}} \\ $$

Commented by Tinkutara last updated on 06/Sep/17

Commented by ajfour last updated on 06/Sep/17

Commented by Tinkutara last updated on 06/Sep/17

But since radius at O is 0, so linear  velocity = rω = 0(ω) = 0? Why not?

$$\mathrm{But}\:\mathrm{since}\:\mathrm{radius}\:\mathrm{at}\:{O}\:\mathrm{is}\:\mathrm{0},\:\mathrm{so}\:\mathrm{linear} \\ $$$$\mathrm{velocity}\:=\:{r}\omega\:=\:\mathrm{0}\left(\omega\right)\:=\:\mathrm{0}?\:\mathrm{Why}\:\mathrm{not}? \\ $$

Commented by ajfour last updated on 06/Sep/17

let velocity of point O be v_0 .  as the bottommost point does not  slip  its velocity= v_0 −ω(3R)=0         ⇒  v_0 ^→ =3ωRi^�    velocity of point P be v_P ; then    v_P ^→ =v_0 ^→ +((ωR)/2)(−sin 30°i^� +cos 30°k^� )         =(3ωR−((ωR)/4))i^� +((ωR)/2)×((√3)/2)k^�         =((11ωR)/4)i^� +((ωR(√3))/4)k^�  .  both are true.

$${let}\:{velocity}\:{of}\:{point}\:{O}\:{be}\:{v}_{\mathrm{0}} . \\ $$$${as}\:{the}\:{bottommost}\:{point}\:{does}\:{not} \\ $$$${slip}\:\:{its}\:{velocity}=\:{v}_{\mathrm{0}} −\omega\left(\mathrm{3}{R}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:\:\overset{\rightarrow} {{v}}_{\mathrm{0}} =\mathrm{3}\omega{R}\hat {{i}} \\ $$$$\:{velocity}\:{of}\:{point}\:{P}\:{be}\:{v}_{{P}} ;\:{then} \\ $$$$\:\:\overset{\rightarrow} {{v}}_{{P}} =\overset{\rightarrow} {{v}}_{\mathrm{0}} +\frac{\omega{R}}{\mathrm{2}}\left(−\mathrm{sin}\:\mathrm{30}°\hat {{i}}+\mathrm{cos}\:\mathrm{30}°\hat {{k}}\right) \\ $$$$\:\:\:\:\:\:\:=\left(\mathrm{3}\omega{R}−\frac{\omega{R}}{\mathrm{4}}\right)\hat {{i}}+\frac{\omega{R}}{\mathrm{2}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\hat {{k}} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{11}\omega{R}}{\mathrm{4}}\hat {{i}}+\frac{\omega{R}\sqrt{\mathrm{3}}}{\mathrm{4}}\hat {{k}}\:. \\ $$$${both}\:{are}\:{true}. \\ $$

Commented by ajfour last updated on 06/Sep/17

that?would be the case if you  hang the wheel in air, like a pulley.

$${that}?{would}\:{be}\:{the}\:{case}\:{if}\:{you} \\ $$$${hang}\:{the}\:{wheel}\:{in}\:{air},\:{like}\:{a}\:{pulley}. \\ $$

Commented by ajfour last updated on 06/Sep/17

rolling is rotating plus sliding..

$${rolling}\:{is}\:{rotating}\:{plus}\:{sliding}.. \\ $$

Commented by Tinkutara last updated on 06/Sep/17

Then why v_O  ≠ (2R)((ω/2)) = Rω? Why  outer radius is taken only?

$$\mathrm{Then}\:\mathrm{why}\:{v}_{{O}} \:\neq\:\left(\mathrm{2}{R}\right)\left(\frac{\omega}{\mathrm{2}}\right)\:=\:{R}\omega?\:\mathrm{Why} \\ $$$$\mathrm{outer}\:\mathrm{radius}\:\mathrm{is}\:\mathrm{taken}\:\mathrm{only}? \\ $$

Commented by ajfour last updated on 06/Sep/17

owing to rotation the speed is  zero, but due to translation it is  3ωR.

$${owing}\:{to}\:{rotation}\:{the}\:{speed}\:{is} \\ $$$${zero},\:{but}\:{due}\:{to}\:{translation}\:{it}\:{is} \\ $$$$\mathrm{3}\omega{R}. \\ $$

Commented by Tinkutara last updated on 06/Sep/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Commented by ajfour last updated on 06/Sep/17

only the outer radius is used for  v_O  because it is the outer ring   which is in contact with ground.  so we have a relation only of the  angular velocity of ring and  linear velocity of its center.  v_O =3ωR.  The disc cam have any  angular velocity (here ω/2) ..

$${only}\:{the}\:{outer}\:{radius}\:{is}\:{used}\:{for} \\ $$$${v}_{{O}} \:{because}\:{it}\:{is}\:{the}\:{outer}\:{ring}\: \\ $$$${which}\:{is}\:{in}\:{contact}\:{with}\:{ground}. \\ $$$${so}\:{we}\:{have}\:{a}\:{relation}\:{only}\:{of}\:{the} \\ $$$${angular}\:{velocity}\:{of}\:{ring}\:{and} \\ $$$${linear}\:{velocity}\:{of}\:{its}\:{center}. \\ $$$${v}_{{O}} =\mathrm{3}\omega{R}.\:\:{The}\:{disc}\:{cam}\:{have}\:{any} \\ $$$${angular}\:{velocity}\:\left({here}\:\omega/\mathrm{2}\right)\:.. \\ $$

Commented by Tinkutara last updated on 06/Sep/17

Thanks. Now I understand.

$$\mathrm{Thanks}.\:\mathrm{Now}\:\mathrm{I}\:\mathrm{understand}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com