Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 208913 by efronzo1 last updated on 27/Jun/24

Answered by A5T last updated on 27/Jun/24

((sinβ)/6)=(1/(AC));((sin(60−β))/3)=(1/(AC))  ⇒((sin(60−β))/(sinβ))=(1/2)⇒β≈40.8934  ⇒sinβ≈0.654654; we can then find AC=(6/(sinβ))  AC≈9.165151

sinβ6=1AC;sin(60β)3=1ACsin(60β)sinβ=12β40.8934sinβ0.654654;wecanthenfindAC=6sinβAC9.165151

Answered by mr W last updated on 27/Jun/24

∠BCD=90°−α+90°−β=120°  BD^2 =6^2 +3^2 −2×3×6 cos 120°=63  AC=2R=((BD)/(sin ∠BCD))=((√(63))/(sin 120°))                    =2(√(21)) ≈9.165

BCD=90°α+90°β=120°BD2=62+322×3×6cos120°=63AC=2R=BDsinBCD=63sin120°=2219.165

Answered by mr W last updated on 27/Jun/24

Commented by mr W last updated on 27/Jun/24

CE=2×6=12  DE=12+3=15  AD=((15)/( (√3)))=5(√3)  AC=(√((5(√3))^2 +3^2 ))=2(√(21))≈9.165

CE=2×6=12DE=12+3=15AD=153=53AC=(53)2+32=2219.165

Commented by Tawa11 last updated on 27/Jun/24

weldone sirs

weldonesirs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com