Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 209027 by Spillover last updated on 30/Jun/24

Answered by Spillover last updated on 05/Jul/24

f(x)=(1/2^(k+1) )                 x=1,2,3,4,5,.....n  from Moment generating function(MGF)  M_x (t)=E(e^(tx) )  M_x (t)=Σ_(x=1) ^n e^(tx) f(x)  M_x (t)=Σ_(x=1) ^n e^(tx) .(1/2^(k+1) )    M_x (t)=(1/2^(k+1) ) Σ_(x=1) ^n e^(tx)   M_x (t)=(1/2^(k+1) ) (e^t +e^(2t) +e^(3t) +e^(4t) .....e^(nt) )  This is geometric series    from  Σ_(x=1) ^n ar^(n−1) =((a(1−r^n ))/(1−r))  a=e^t          r=e^t          ((e^t (1−e^(nt) ))/(1−r))  M_x (t)=(1/2^(k+1) ) [ ((e^t (1−e^(nt) ))/(1−r))]  1^(st)  derivative =mean   =M_x (t)=(1/2^(k+1) ) [ ((e^t (1−e^(nt) ))/(1−e^t ))]  M_x ^′ (t)=(1/2^(k+1) ) [ ((e^t (1−e^(nt) )−e^(tn) e^t )/((1−e^t )^2 ))]  t=0      Mean(x^− )=−(1/2^(k+1) )  apply quotient rule  M_x ^′ (t)=(d/dt)[(1/2^(k+1) )  ((e^t (1−e^(nt) )−e^(tn) e^t )/((1−e^t )^2 ))]  M_x ^(′′) (t)=(d^2 /dt^2 )[(1/2^(k+1) )  .((e^t (1−e^(nt) )−e^(tn) e^t )/((1−e^t )^2 ))]

f(x)=12k+1x=1,2,3,4,5,.....nfromMomentgeneratingfunction(MGF)Mx(t)=E(etx)Mx(t)=nx=1etxf(x)Mx(t)=nx=1etx.12k+1Mx(t)=12k+1nx=1etxMx(t)=12k+1(et+e2t+e3t+e4t.....ent)Thisisgeometricseriesfromnx=1arn1=a(1rn)1ra=etr=etet(1ent)1rMx(t)=12k+1[et(1ent)1r]1stderivative=mean=Mx(t)=12k+1[et(1ent)1et]Mx(t)=12k+1[et(1ent)etnet(1et)2]t=0Mean(x)=12k+1applyquotientruleMx(t)=ddt[12k+1et(1ent)etnet(1et)2]Mx(t)=d2dt2[12k+1.et(1ent)etnet(1et)2]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com