Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 209031 by Spillover last updated on 30/Jun/24

Answered by Spillover last updated on 07/Jul/24

f(x)= { (((1/n)    x=1,2,3,.....=(1/n)[e^t +e^(2t) +e^(3t) +........])),((0  else where)) :}  (a) moment generating function  M_x (t)=E(e^(tx) )  M_x (t)=Σ_(3=1) e^(tx) .=(1/n)[Σ_(3=1) e^(tx) ]  =(1/n)[e^t +e^(2t) +e^(3t) +........]  =(1/n)[(([e^(nt) −1)/(e^t −1))]  Probability generatingfunction  G_x (s)=E(s^x )  =Σ_(x=1) ^n s^x .(1/n)=(1/(n ))Σ_(x=1) ^n s^x   (1/(n ))[s+s^2 +s^3 +s^4 +....+s^n ]  =(1/n)[((s(1−s^n ))/(1−s))]  For the expection       M_x ^′ (0)=E(x)  for variance     M_x ′′−[M_x (0)]^2

f(x)={1nx=1,2,3,.....=1n[et+e2t+e3t+........]0elsewhere(a)momentgeneratingfunctionMx(t)=E(etx)Mx(t)=3=1etx.=1n[3=1etx]=1n[et+e2t+e3t+........]=1n[[ent1et1]ProbabilitygeneratingfunctionGx(s)=E(sx)=nx=1sx.1n=1nnx=1sx1n[s+s2+s3+s4+....+sn]=1n[s(1sn)1s]FortheexpectionMx(0)=E(x)forvarianceMx[Mx(0)]2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com