Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 209121 by Spillover last updated on 02/Jul/24

Answered by Spillover last updated on 04/Jul/24

r=r_0 e^(kθ)   In central force field,  the angular momentum L is conserved  L=mr^2 (dθ/dt)     where m=mass of the particle  from orbit equation  (dr/dθ)=r_0 ke^(kθ) =kr  radial velocity (v_r )=(dr/dt)=(dr/dθ).(dθ/dt)=kr.(dθ/dt)  Transverse velocity (v_θ )=r(dθ/dt)  total velocity (v)  v^2 =v_r ^2 +v_θ ^2    =(kr.(dθ/dt))^2 +(r(dθ/dt))^2 =r^2 (k^2 +1)((dθ/(dt )))^2   The radil component of force (F_r )  F_r =m[(dv_r /dt)−r((dθ/dt))^2 ]  from  radial velocity (v_r )=(dr/dt)=(dr/dθ).(dθ/dt)=kr.(dθ/dt)   v_r =kr.(dθ/dt)

r=r0ekθIncentralforcefield,theangularmomentumLisconservedL=mr2dθdtwherem=massoftheparticlefromorbitequationdrdθ=r0kekθ=krradialvelocity(vr)=drdt=drdθ.dθdt=kr.dθdtTransversevelocity(vθ)=rdθdttotalvelocity(v)v2=vr2+vθ2=(kr.dθdt)2+(rdθdt)2=r2(k2+1)(dθdt)2Theradilcomponentofforce(Fr)Fr=m[dvrdtr(dθdt)2]fromradialvelocity(vr)=drdt=drdθ.dθdt=kr.dθdtvr=kr.dθdt

Terms of Service

Privacy Policy

Contact: info@tinkutara.com