Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 20916 by Tinkutara last updated on 07/Sep/17

A body starts rotating about a  stationary axis with an angular  acceleration b = 2t rad/s^2 . How soon  after the beginning of rotation will the  total acceleration vector of an arbitrary  point on the body forms an angle of 60°  with its velocity vector?  (1) (2(√3))^(1/3)  s  (2) (2(√3))^(1/2)  s  (3) (2(√3)) s  (4) (2(√3))^2  s

$$\mathrm{A}\:\mathrm{body}\:\mathrm{starts}\:\mathrm{rotating}\:\mathrm{about}\:\mathrm{a} \\ $$$$\mathrm{stationary}\:\mathrm{axis}\:\mathrm{with}\:\mathrm{an}\:\mathrm{angular} \\ $$$$\mathrm{acceleration}\:{b}\:=\:\mathrm{2}{t}\:\mathrm{rad}/\mathrm{s}^{\mathrm{2}} .\:\mathrm{How}\:\mathrm{soon} \\ $$$$\mathrm{after}\:\mathrm{the}\:\mathrm{beginning}\:\mathrm{of}\:\mathrm{rotation}\:\mathrm{will}\:\mathrm{the} \\ $$$$\mathrm{total}\:\mathrm{acceleration}\:\mathrm{vector}\:\mathrm{of}\:\mathrm{an}\:\mathrm{arbitrary} \\ $$$$\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{body}\:\mathrm{forms}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{60}° \\ $$$$\mathrm{with}\:\mathrm{its}\:\mathrm{velocity}\:\mathrm{vector}? \\ $$$$\left(\mathrm{1}\right)\:\left(\mathrm{2}\sqrt{\mathrm{3}}\right)^{\mathrm{1}/\mathrm{3}} \:\mathrm{s} \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{2}\sqrt{\mathrm{3}}\right)^{\mathrm{1}/\mathrm{2}} \:\mathrm{s} \\ $$$$\left(\mathrm{3}\right)\:\left(\mathrm{2}\sqrt{\mathrm{3}}\right)\:\mathrm{s} \\ $$$$\left(\mathrm{4}\right)\:\left(\mathrm{2}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \:\mathrm{s} \\ $$

Answered by ajfour last updated on 08/Sep/17

tangential acceleration is in the  direction of velocity vector.  a_θ =bR=2Rt  ∣a_r ∣=ω^2 R       (where ω=∫_0 ^(  t) 2tdt)  so a_r =t^4 R  tan 60° =(√3) =((∣a_r ∣)/a_θ ) = ((t^4 R)/(2Rt)) =(t^3 /2)    ⇒   t^3  = 2(√3)            t= (2(√3))^(1/3) s .

$${tangential}\:{acceleration}\:{is}\:{in}\:{the} \\ $$$${direction}\:{of}\:{velocity}\:{vector}. \\ $$$${a}_{\theta} ={bR}=\mathrm{2}{Rt} \\ $$$$\mid{a}_{{r}} \mid=\omega^{\mathrm{2}} {R}\:\:\:\:\:\:\:\left({where}\:\omega=\int_{\mathrm{0}} ^{\:\:{t}} \mathrm{2}{tdt}\right) \\ $$$${so}\:{a}_{{r}} ={t}^{\mathrm{4}} {R} \\ $$$$\mathrm{tan}\:\mathrm{60}°\:=\sqrt{\mathrm{3}}\:=\frac{\mid{a}_{{r}} \mid}{{a}_{\theta} }\:=\:\frac{{t}^{\mathrm{4}} {R}}{\mathrm{2}{Rt}}\:=\frac{{t}^{\mathrm{3}} }{\mathrm{2}} \\ $$$$\:\:\Rightarrow\:\:\:{t}^{\mathrm{3}} \:=\:\mathrm{2}\sqrt{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\boldsymbol{{t}}=\:\left(\mathrm{2}\sqrt{\mathrm{3}}\right)^{\mathrm{1}/\mathrm{3}} \boldsymbol{{s}}\:. \\ $$

Commented by Tinkutara last updated on 08/Sep/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com