Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 20939 by Hitler last updated on 08/Sep/17

Demostration of the volume of an sphere V=((4πr^3 )/3)  x^2 +y^2 +z^2 =r^2  We divide the sphere in 8 parts. So the volume of a part is  ∫_0 ^( r) ∫_0 ^( (√(r^2 −x^2 ))) (√(r^2 −x^2 −y^2 ))∂y∂x  Lets asumme a^2 =r^2 −x^2   ∫_0 ^( r) ∫_0 ^( a) (√(a^2 −y^2 ))∂y∂x  ∫_0 ^( r) a∫_0 ^( a) (√(1−((y/a))^2 ))∂y∂x Lets assume (y/a)=sinθ⇒(∂y/a)=cosθ∂θ  ∫(√(1−sin^2 θ))acosθ∂θ  ∫acos^2 θ∂θ  a((θ/2)−((sin2θ)/4))  a(((arcsin((y/a)))/2)−((y(√(a^2 −y^2 )))/(2a^2 )))  ∫_0 ^( r) a^2 (((arcsin((y/a)))/2)−((y(√(a^2 −y^2 )))/(2a^2 )))∣_0 ^a ∂x  ∫_0 ^( r) (((a^2 arcsin((y/a))−y(√(a^2 −y^2 )))/2))∣_0 ^a ∂x  ∫_0 ^( r) ((πa^2 )/4)∂x  ∫_0 ^( r) ((π(r^2 −x^2 ))/4)∂x  (((6πr^2 x−2πx^3 )/(24)))∣_0 ^r   ((πr^3 )/6)=1/8Volume of the sphrere so...  V=((4πr^3 )/3)

$$\mathrm{Demostration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{an}\:\mathrm{sphere}\:\mathrm{V}=\frac{\mathrm{4}\pi\mathrm{r}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{r}^{\mathrm{2}} \:\mathrm{We}\:\mathrm{divide}\:\mathrm{the}\:\mathrm{sphere}\:\mathrm{in}\:\mathrm{8}\:\mathrm{parts}.\:\mathrm{So}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{a}\:\mathrm{part}\:\mathrm{is} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{r}} \int_{\mathrm{0}} ^{\:\sqrt{\mathrm{r}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }} \sqrt{\mathrm{r}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }\partial\mathrm{y}\partial\mathrm{x}\:\:\mathrm{Lets}\:\mathrm{asumme}\:\mathrm{a}^{\mathrm{2}} =\mathrm{r}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{r}} \int_{\mathrm{0}} ^{\:\mathrm{a}} \sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }\partial\mathrm{y}\partial\mathrm{x} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{r}} \mathrm{a}\int_{\mathrm{0}} ^{\:\mathrm{a}} \sqrt{\mathrm{1}−\left(\frac{\mathrm{y}}{\mathrm{a}}\right)^{\mathrm{2}} }\partial\mathrm{y}\partial\mathrm{x}\:\mathrm{Lets}\:\mathrm{assume}\:\frac{\mathrm{y}}{\mathrm{a}}=\mathrm{sin}\theta\Rightarrow\frac{\partial\mathrm{y}}{\mathrm{a}}=\mathrm{cos}\theta\partial\theta \\ $$$$\int\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \theta}\mathrm{acos}\theta\partial\theta \\ $$$$\int\mathrm{acos}^{\mathrm{2}} \theta\partial\theta \\ $$$$\mathrm{a}\left(\frac{\theta}{\mathrm{2}}−\frac{\mathrm{sin2}\theta}{\mathrm{4}}\right) \\ $$$$\mathrm{a}\left(\frac{\mathrm{arcsin}\left(\frac{\mathrm{y}}{\mathrm{a}}\right)}{\mathrm{2}}−\frac{\mathrm{y}\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }}{\mathrm{2a}^{\mathrm{2}} }\right) \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{r}} \mathrm{a}^{\mathrm{2}} \left(\frac{\mathrm{arcsin}\left(\frac{\mathrm{y}}{\mathrm{a}}\right)}{\mathrm{2}}−\frac{\mathrm{y}\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }}{\mathrm{2a}^{\mathrm{2}} }\right)\mid_{\mathrm{0}} ^{\mathrm{a}} \partial\mathrm{x} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{r}} \left(\frac{\mathrm{a}^{\mathrm{2}} \mathrm{arcsin}\left(\frac{\mathrm{y}}{\mathrm{a}}\right)−\mathrm{y}\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }}{\mathrm{2}}\right)\mid_{\mathrm{0}} ^{\mathrm{a}} \partial\mathrm{x} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{r}} \frac{\pi\mathrm{a}^{\mathrm{2}} }{\mathrm{4}}\partial\mathrm{x} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{r}} \frac{\pi\left(\mathrm{r}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{4}}\partial\mathrm{x} \\ $$$$\left(\frac{\mathrm{6}\pi\mathrm{r}^{\mathrm{2}} \mathrm{x}−\mathrm{2}\pi\mathrm{x}^{\mathrm{3}} }{\mathrm{24}}\right)\mid_{\mathrm{0}} ^{\mathrm{r}} \\ $$$$\frac{\pi\mathrm{r}^{\mathrm{3}} }{\mathrm{6}}=\mathrm{1}/\mathrm{8Volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sphrere}\:\mathrm{so}... \\ $$$$\mathbb{V}=\frac{\mathrm{4}\pi\mathrm{r}^{\mathrm{3}} }{\mathrm{3}}\: \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com