Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 209694 by Frix last updated on 18/Jul/24

x^2 +xy+y^2 =α^2   y^2 +yz+z^2 =β^2   z^2 +zx+x^2 =α^2 +β^2   Find x+y+z for x, y, z ∈R^+

x2+xy+y2=α2y2+yz+z2=β2z2+zx+x2=α2+β2Findx+y+zforx,y,zR+

Answered by mr W last updated on 18/Jul/24

Commented by mr W last updated on 18/Jul/24

(1/2)(xy+yz+zx)×((√3)/2)=((αβ)/2)  ⇒xy+yz+zx=((2αβ)/( (√3)))  2(x^2 +y^2 +z^2 )+xy+yz+zx=2(α^2 +β^2 )  (x+y+z)^2 −(3/2)(xy+yz+zx)=α^2 +β^2   (x+y+z)^2 =α^2 +β^2 +(√3)αβ  ⇒x+y+z=(√(α^2 +β^2 +(√3)αβ))

12(xy+yz+zx)×32=αβ2xy+yz+zx=2αβ32(x2+y2+z2)+xy+yz+zx=2(α2+β2)(x+y+z)232(xy+yz+zx)=α2+β2(x+y+z)2=α2+β2+3αβx+y+z=α2+β2+3αβ

Commented by Frix last updated on 18/Jul/24

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com