Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 209709 by Ismoiljon_008 last updated on 19/Jul/24

     ∫(sinx+cosx)^(11) dx= ?     help me please

(sinx+cosx)11dx=?helpmeplease

Answered by mr W last updated on 19/Jul/24

∫(sin x+cos x)^(11) dx  =∫((√2) cos (x−(π/4)))^(11) dx  =32(√2)∫cos^(11)  (x−(π/4))d(x−(π/4))  =32(√2)∫cos^(11)  udu  =32(√2)∫cos^(10)  u d(sin u)  =32(√2)∫(1−sin^2  u)^5 d(sin u)  =32(√2)∫(1−t^2 )^5 dt  =32(√2)∫(1−5t^2 +10t^4 −10t^6 +5t^8 −t^(10) )dt  =32(√2)(t−((5t^3 )/3)+2t^5 −((10t^7 )/7)+((5t^9 )/9)−(t^(11) /(11)))+C  =32(√2)[sin (x−(π/4))−((5 sin^3  (x−(π/4)))/3)+2 sin^5  (x−(π/4))−((10 sin^7  (x−(π/4)))/7)+((5 sin^9  (x−(π/4)))/9)−((sin^(11)  (x−(π/4)))/(11))]+C

(sinx+cosx)11dx=(2cos(xπ4))11dx=322cos11(xπ4)d(xπ4)=322cos11udu=322cos10ud(sinu)=322(1sin2u)5d(sinu)=322(1t2)5dt=322(15t2+10t410t6+5t8t10)dt=322(t5t33+2t510t77+5t99t1111)+C=322[sin(xπ4)5sin3(xπ4)3+2sin5(xπ4)10sin7(xπ4)7+5sin9(xπ4)9sin11(xπ4)11]+C

Commented by Ismoiljon_008 last updated on 19/Jul/24

   thank you very much

thankyouverymuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com