Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 20973 by Tinkutara last updated on 09/Sep/17

A small solid spherical ball of high  density is dropped in a viscous liquid.  Its journey in the liquid is best described  in the following figure by the curve

$$\mathrm{A}\:\mathrm{small}\:\mathrm{solid}\:\mathrm{spherical}\:\mathrm{ball}\:\mathrm{of}\:\mathrm{high} \\ $$$$\mathrm{density}\:\mathrm{is}\:\mathrm{dropped}\:\mathrm{in}\:\mathrm{a}\:\mathrm{viscous}\:\mathrm{liquid}. \\ $$$$\mathrm{Its}\:\mathrm{journey}\:\mathrm{in}\:\mathrm{the}\:\mathrm{liquid}\:\mathrm{is}\:\mathrm{best}\:\mathrm{described} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{following}\:\mathrm{figure}\:\mathrm{by}\:\mathrm{the}\:\mathrm{curve} \\ $$

Commented by Tinkutara last updated on 09/Sep/17

Answered by dioph last updated on 09/Sep/17

F = m(d^2 x/dt^2 )  Let b ≡ 6πηR  mg − b(dx/dt) = m(d^2 x/dt^2 )  (d^2 x/dt^2 ) + (b/m) (dx/dt) = g  x(t) = K_1 t + K_2  + K_3 e^(−bt/m)   K_1  = ((mg)/b)  (dx/dt)∣_0  = 0 ⇔ ((mg)/b) − (b/m)K_3  = 0  ⇒ K_3  = ((m^2 g)/b^2 )  x(0) = 0 ⇔ K_2  + K_3  = 0  ⇒ K_2  = ((−m^2 g)/b^2 )  x(t) = ((mg)/b)(t−(m/b)(1−e^(−bt/m) ))  (dx/dt) = ((mg)/b)(1−e^(−bt/m) )  In steady−state, v = ((mg)/b) (constant)  So answer should be curve C

$${F}\:=\:{m}\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} } \\ $$$$\mathrm{Let}\:{b}\:\equiv\:\mathrm{6}\pi\eta{R} \\ $$$${mg}\:−\:{b}\frac{{dx}}{{dt}}\:=\:{m}\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} } \\ $$$$\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }\:+\:\frac{{b}}{{m}}\:\frac{{dx}}{{dt}}\:=\:{g} \\ $$$${x}\left({t}\right)\:=\:{K}_{\mathrm{1}} {t}\:+\:{K}_{\mathrm{2}} \:+\:{K}_{\mathrm{3}} {e}^{−{bt}/{m}} \\ $$$${K}_{\mathrm{1}} \:=\:\frac{{mg}}{{b}} \\ $$$$\frac{{dx}}{{dt}}\mid_{\mathrm{0}} \:=\:\mathrm{0}\:\Leftrightarrow\:\frac{{mg}}{{b}}\:−\:\frac{{b}}{{m}}{K}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\Rightarrow\:{K}_{\mathrm{3}} \:=\:\frac{{m}^{\mathrm{2}} {g}}{{b}^{\mathrm{2}} } \\ $$$${x}\left(\mathrm{0}\right)\:=\:\mathrm{0}\:\Leftrightarrow\:{K}_{\mathrm{2}} \:+\:{K}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\Rightarrow\:{K}_{\mathrm{2}} \:=\:\frac{−{m}^{\mathrm{2}} {g}}{{b}^{\mathrm{2}} } \\ $$$${x}\left({t}\right)\:=\:\frac{{mg}}{{b}}\left({t}−\frac{{m}}{{b}}\left(\mathrm{1}−{e}^{−{bt}/{m}} \right)\right) \\ $$$$\frac{{dx}}{{dt}}\:=\:\frac{{mg}}{{b}}\left(\mathrm{1}−{e}^{−{bt}/{m}} \right) \\ $$$$\mathrm{In}\:\mathrm{steady}−\mathrm{state},\:{v}\:=\:\frac{{mg}}{{b}}\:\left(\mathrm{constant}\right) \\ $$$$\mathrm{So}\:\mathrm{answer}\:\mathrm{should}\:\mathrm{be}\:\mathrm{curve}\:\mathrm{C} \\ $$

Commented by Tinkutara last updated on 09/Sep/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com