Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 209735 by hardmath last updated on 19/Jul/24

tan(3x)  +  tan(5x)  =  2  Find:   x = ?

tan(3x)+tan(5x)=2Find:x=?

Answered by a.lgnaoui last updated on 20/Jul/24

voir reponse en bas   (a l exeption  d ′ereur de calcul)

voirreponseenbas(alexeptiondereurdecalcul)

Commented by a.lgnaoui last updated on 20/Jul/24

Commented by a.lgnaoui last updated on 20/Jul/24

Answered by a.lgnaoui last updated on 21/Jul/24

 { ((tan a+tan b=((tan (a+b))/(1−tan atan b)))),((avec t=tan x     tan 2x=((2t)/(2−t^2 )))) :}  2=((tan 8x)/(1−tan 3x.tan 5x))  •tan 3x=((tan 2x+tan x)/(1−tan 2x.tan x))=((t(3−t^2 ))/(1−3t^2 ))       tan 3x=(((3−t)t)/((1−3t^2 ))     (1)  •tan 5x=((tan 2x+tan 3x)/(1−tan 2x.tan 3x))     =((2t(1−3t^2 )+t(1−t^2 )(3−t^2 ))/((1−t^2 )(1−3t^2 )−2t^2 (3−t^2 )))         tan 5x=((t(t^4 −10t^2 +5))/(5t^4 −10t^2 +1))  (2)    2=tan 3x+tan 5x    ⇒  2=(((3−t)t)/(1−3t^2 ))+((t(t^4 −10t^2 +5))/(5t^4 −10t^2 +1))  =((3t−t^2 )(5t^4 −10t^2 +1)+(t−3t^3 )(t^4 −10t^2 +5))/((1−3t^2 )(5t^4 −10t^2 +1)))    =((−3t^7 −25t^3 −10t^2 +31t^5 +5t^4 +5t+1)/(−15t^6 +35t^4 −13t^2 +1))  soit  ((3t^7 −31t^5 −5t^4 +25t^3 +10t^2 −5t+1)/(15t^6 −35t^4 +13t^2 −1))=2  30t^6 −70t^4 +26t^2 −2=  3t^7 −31t^5 −5t^4 +25t^3 +10t^2 −5t+1    3t^7 −30t^6 −31t^5 +65t^4 +25t^3 −16t^2 −5t+3=0              t_1 =−1,668557054              t_2 =1,1773794637              t_3 =20,76657908   x=−59     x_2 =49,65      x_3 =84,69  valeur retenue    est x  ≅49,65...

{tana+tanb=tan(a+b)1tanatanbavect=tanxtan2x=2t2t22=tan8x1tan3x.tan5xtan3x=tan2x+tanx1tan2x.tanx=t(3t2)13t2tan3x=(3t)t(13t2(1)tan5x=tan2x+tan3x1tan2x.tan3x=2t(13t2)+t(1t2)(3t2)(1t2)(13t2)2t2(3t2)tan5x=t(t410t2+5)5t410t2+1(2)2=tan3x+tan5x2=(3t)t13t2+t(t410t2+5)5t410t2+1=3tt2)(5t410t2+1)+(t3t3)(t410t2+5)(13t2)(5t410t2+1)=3t725t310t2+31t5+5t4+5t+115t6+35t413t2+1soit3t731t55t4+25t3+10t25t+115t635t4+13t21=230t670t4+26t22=3t731t55t4+25t3+10t25t+13t730t631t5+65t4+25t316t25t+3=0t1=1,668557054t2=1,1773794637t3=20,76657908x=59x2=49,65x3=84,69valeurretenueestx49,65...

Commented by a.lgnaoui last updated on 21/Jul/24

Commented by hardmath last updated on 24/Jul/24

thank you dear professors

thankyoudearprofessors

Answered by Frix last updated on 22/Jul/24

tan 3x =(((3−tan^2  x)tan x)/(1−3tan^2  x))  tan 5x =(((5−10tan^2  x +4tan^4  x))/(1−10tan^2  x +5tan^4  x))  tan 3x +tan 5x =2 ∧ t=tan x  ⇒  t^7 −((15t^6 )/4)−7t^5 +((35t^4 )/4)+7t^3 −((13t^2 )/4)−t+(1/4)=0  This can only be approximated.

tan3x=(3tan2x)tanx13tan2xtan5x=(510tan2x+4tan4x)110tan2x+5tan4xtan3x+tan5x=2t=tanxt715t647t5+35t44+7t313t24t+14=0Thiscanonlybeapproximated.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com