Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 209761 by pablo1234523 last updated on 20/Jul/24

x^3 −9xy^2 =28  x^2 y−y^3 =15  solve for x and y.  x,y∈R

x39xy2=28x2yy3=15solveforxandy.x,yR

Answered by mr W last updated on 20/Jul/24

let y=kx  x^3 (1−9k^2 )=28   ...(i)  x^3 (k−k^3 )=15   ...(ii)  (i)/(ii):  ((1−9k^2 )/(k−k^3 ))=((28)/(15))  28k^3 −135k^2 −28k+15=0  (k−5)(4k−1)(7k+3)=0  ⇒k=−(3/7), (1/4), 5  ⇒x=(((28)/(1−9k^2 )))^(1/3) =−(7/2), 4, −(1/2)  ⇒y=(3/2), 1, −(5/2)

lety=kxx3(19k2)=28...(i)x3(kk3)=15...(ii)(i)/(ii):19k2kk3=281528k3135k228k+15=0(k5)(4k1)(7k+3)=0k=37,14,5x=2819k23=72,4,12y=32,1,52

Commented by pablo1234523 last updated on 20/Jul/24

thanks a lot sir;  how did u find the roots of that cubic equation?  by inspection i think.  my actual question was: −  how to find ((28+45i(√3)))^(1/3) .

thanksalotsir;howdidufindtherootsofthatcubicequation?byinspectionithink.myactualquestionwas:howtofind28+45i33.

Commented by mr W last updated on 20/Jul/24

i tried with the factors of 15, and  found 5 is a root. the rest is then  easy.

itriedwiththefactorsof15,andfound5isaroot.therestistheneasy.

Commented by mr W last updated on 20/Jul/24

28+45(√3)i=((√(19)))^3 e^(itan^(−1) ((45(√3))/(28)))   ((28+45(√3)i))^(1/3) =(√(19))e^(i(((2kπ)/3)+(1/3)tan^(−1) ((45(√3))/(28))))  with k=0,1,2

28+453i=(19)3eitan14532828+453i3=19ei(2kπ3+13tan145328)withk=0,1,2

Commented by pablo1234523 last updated on 20/Jul/24

thanks sir,   infact ((28+45i(√3)))^(1/3) =−(7/2)+((3i(√3))/2), 4+i(√3), −(1/2)−((5i(√3))/2)  is there method to find tan((1/3)tan^(−1) ((45(√3))/(28)))  more specifucally, cos ((1/3)tan^(−1) ((45(√3))/(28)) )=cos ((1/3)cos^(−1) ((28)/(19(√(19)))) )  similarly for sin(..)

thankssir,infact28+45i33=72+3i32,4+i3,125i32istheremethodtofindtan(13tan145328)morespecifucally,cos(13tan145328)=cos(13cos1281919)similarlyforsin(..)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com