Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 209913 by mr W last updated on 25/Jul/24

Commented by mr W last updated on 25/Jul/24

AB is diameter, CD is tangent.   AE=ED, AB//CD  find angle x=?

ABisdiameter,CDistangent.AE=ED,AB//CDfindanglex=?

Answered by mahdipoor last updated on 26/Jul/24

define:  EH_1  (⊥BA ) ,  EH_(2  ) (⊥CD) ,  AH_3   (⊥CD)  AH_3 D∼EH_2 D⇒((AD)/(ED))=((AH_3 )/(EH_2 ))⇒(2/1)=(R/(EH_3 ))⇒EH_3 =(R/2)  EH_3 +EH_1 =R⇒EH_1 =(R/2)  S_(AOE) =((EH_1 ×AO)/2)=((AO×OE×sin(AOE))/2)  ⇒(1/2)=sin(180−2x)⇒x=15

define:EH1(BA),EH2(CD),AH3(CD)AH3DEH2DADED=AH3EH221=REH3EH3=R2EH3+EH1=REH1=R2SAOE=EH1×AO2=AO×OE×sin(AOE)212=sin(1802x)x=15

Answered by a.lgnaoui last updated on 26/Jul/24

((sin x)/(AC))=((sin (45−x))/(CD))  sin x=(R/(AD))   AC=R(√2)  (R/(AD×R(√2)))=((√2)/(2CD))(cos x−sin x)       (1/(AD))   =(((cos x−sin x))/(CD))  CD^2 =DE×AD=((AD^2 )/2)⇒ CD=((AD(√2))/2)  Donc    (1/(AD))=(((cos x−sin x)(√2))/(AD))  soit     ((√2)/2)=cos x−sin x  cos x(1−tan x)−((√2)/2)=0    tan x=t  ((1−t)/( (√(1+t^2 ))))=(1/( (√2)))    (((1−t)^2 )/(1+t^2 ))=(1/2)     2−4t+2t^2 =1+t^2     t^2 −4t+3=0     t=((2±(√3))/1)   soit     { ((x=75°)),((x=15°)) :}  or  x<45°   ⇒   x=15° est solution

sinxAC=sin(45x)CDsinx=RADAC=R2RAD×R2=22CD(cosxsinx)1AD=(cosxsinx)CDCD2=DE×AD=AD22CD=AD22Donc1AD=(cosxsinx)2ADsoit22=cosxsinxcosx(1tanx)22=0tanx=t1t1+t2=12(1t)21+t2=1224t+2t2=1+t2t24t+3=0t=2±31soit{x=75°x=15°orx<45°x=15°estsolution

Answered by mr W last updated on 26/Jul/24

Commented by mr W last updated on 26/Jul/24

((AB)/(AE))=((AD)/(FD)) ⇒((2R)/(AE))=((AD)/(R+CD))  AD×ED=AD×AE=2R(R+CD)=CD^2   ⇒CD^2 −2R×CD=2R^2   ⇒CD=((√3)+1)R  tan x=(R/(R+((√3)+1)R))=2−(√3)  ⇒x=15°

ABAE=ADFD2RAE=ADR+CDAD×ED=AD×AE=2R(R+CD)=CD2CD22R×CD=2R2CD=(3+1)Rtanx=RR+(3+1)R=23x=15°

Answered by A5T last updated on 26/Jul/24

Commented by A5T last updated on 26/Jul/24

DE×DA=2DE^2 =CD^2 ⇒CD=DE(√2)  ((sin135)/(2DE))=((sin(45−x))/(CD))⇒sin(45−x)=((CDsin135°)/(2DE))  ⇒sin(45−x)=(1/2)⇒45−x=30°⇒x=15°

DE×DA=2DE2=CD2CD=DE2sin1352DE=sin(45x)CDsin(45x)=CDsin135°2DEsin(45x)=1245x=30°x=15°

Terms of Service

Privacy Policy

Contact: info@tinkutara.com