Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 209918 by hardmath last updated on 25/Jul/24

Find:   ∫_0 ^( ∞)  (({x}^([x]) )/([x] + 1)) dx = ?  {x} → fractional part  [x]   → full part

Find:0{x}[x][x]+1dx=?{x}fractionalpart[x]fullpart

Answered by MM42 last updated on 25/Jul/24

{x}=x−[x]  I_n =∫_0 ^1 dx+∫_1 ^2 (((x−1))/2)dx+∫_2 ^3 (((x−2)^2 )/3)dx+...+∫_(n−1) ^n (((x−n+1)^(n−1) )/n) dx  =x]_0 ^1 +(((x−1)^2 )/4)]_1 ^2 +(((x−2)^3 )/9)]_2 ^3 +...+(((x−n+1)^n )/n^2 )]_(n−1) ^n   =1+(1/4)+(1/9)+...+(1/n^2 )  ⇒I=Σ_(n=1) ^∞  (1/n^2 )=(π^2 /6) ✓

{x}=x[x]In=01dx+12(x1)2dx+23(x2)23dx+...+n1n(xn+1)n1ndx=x]01+(x1)24]12+(x2)39]23+...+(xn+1)nn2]n1n=1+14+19+...+1n2I=n=11n2=π26

Terms of Service

Privacy Policy

Contact: info@tinkutara.com