Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 209923 by OmoloyeMichael last updated on 26/Jul/24

Solve: ∫((sin(x!))/(x!))dx

Solve:sin(x!)x!dx

Answered by MrGaster last updated on 03/Feb/25

∫((sin(x!))/(x!))dx=Σ_(k=0) ^∞ ∫_(kπ) ^((k+1)) ((sin(x)!)/(x!))  =Σ_(k=0) ^∞ [(−1)^k ∫_0 ^π ((sin((kπ+t)!))/((kπ+t)!))dt)  =Σ_(k=0) ^∞ [(−1)^k (((cos((kπ−t)!))/((kπ+t)!)))∣_0 ^π ]  =Σ_(k=0) ^∞ [(−1)^k (((cos((k+1)π!))/((k+1)π!))−((cos(kπ!))/(kπ)))]  =lim_(n→∞) [(−1)^n ((cos((n−1)π!))/((n+1)!))+Σ_(k=1) ^n (((−1)^(k=1) )/((k−1)π!))+(1/(π!))]  =(1/(π!))+Σ_(k=1) ^∞ (((−1)^(k−1) )/((k−1)π!))  I=∫((sin(x!))/(x!))dx=(1/(π!))+Σ_(k=1) ^∞ (((−1)^(k−1) )/((k−1)π!))

sin(x!)x!dx=k=0kπ(k+1)sin(x)!x!=k=0[(1)k0πsin((kπ+t)!)(kπ+t)!dt)=k=0[(1)k(cos((kπt)!)(kπ+t)!)0π]=k=0[(1)k(cos((k+1)π!)(k+1)π!cos(kπ!)kπ)]=limn[(1)ncos((n1)π!)(n+1)!+nk=1(1)k=1(k1)π!+1π!]=1π!+k=1(1)k1(k1)π!I=sin(x!)x!dx=1π!+k=1(1)k1(k1)π!

Commented by mr W last updated on 23/Mar/25

but the question didn′t ask  ∫_0 ^∞ ((sin(x!))/(x!))dx

butthequestiondidntask0sin(x!)x!dx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com