Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 209980 by a.lgnaoui last updated on 27/Jul/24

determiner h ?  CD=20    AB=30  h1=25

determinerh?CD=20AB=30h1=25

Commented by a.lgnaoui last updated on 27/Jul/24

Commented by mr W last updated on 27/Jul/24

is CD^(⌢)  semi−circle?  is AB^(⌢)  circular arc?

isCDsemicircle?isABcirculararc?

Commented by mr W last updated on 27/Jul/24

r=radius of CD^(⌢)   R=radius of AB^(⌢)   r=((CD)/2)=((20)/2)=10  2R sin^(−1) ((15)/R)=πr  R sin^(−1) ((15)/R)=5π ⇒R=30  h=10−(30−(√(30^2 −15^2 )))=15(√3)−20≈5.98

r=radiusofCDR=radiusofABr=CD2=202=102Rsin115R=πrRsin115R=5πR=30h=10(30302152)=153205.98

Commented by a.lgnaoui last updated on 28/Jul/24

Please ,What will  be the value of  h  if lignes AB  and CD  are  hyperboliques?

Please,WhatwillbethevalueofhiflignesABandCDarehyperboliques?

Commented by a.lgnaoui last updated on 28/Jul/24

thank you

thankyou

Commented by mr W last updated on 28/Jul/24

if the curves are parabolas or  hyperbolas there is no solution  possible.

ifthecurvesareparabolasorhyperbolasthereisnosolutionpossible.

Commented by Frix last updated on 28/Jul/24

2 similar ellipses are possible.  ⇒  AB^(⌢) =CD^(⌢)   and we have  h_2 =h_1 −((∣AB∣)/2)=10  h=h_1 −((∣CD∣)/2)=15

2similarellipsesarepossible.AB=CDandwehaveh2=h1AB2=10h=h1CD2=15

Terms of Service

Privacy Policy

Contact: info@tinkutara.com