Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 210017 by klipto last updated on 28/Jul/24

  MATH−WHIZZKID  using kamke find the genral  solution for the differential equation  1. x^2 y′′+x^2 y′−2y=0  −−−−−−−−−  solve this using forbenius mtd  1.x^2 y′′+(x^3 −3x)y′+(4−2x)y=0  −−−−−−−−  solve the differential eqn by power series  1. y′′−2xy′+2py=0  −−−−−−−−−  use perseval′s theorem to  ∫_0 ^∞ ((cos^2 (𝛂(𝛑/2)))/((1−𝛂^2 )^2 ))dx.  −−−−−−−−−−  evaluate this integral by contour integration  1. ∫_0 ^∞ ((cos^2 (𝛂(𝛑/2)))/((1−𝛂^2 )^2 ))dx.  −−−−−−−−−  ∮_c ((1+e^(i𝛑z) )/((z−1)^2 (z+1)^2 ))dz  c−upper half plane  klipto−quanta⊎

MATHWHIZZKIDusingkamkefindthegenralsolutionforthedifferentialequation1.x2y+x2y2y=0solvethisusingforbeniusmtd1.x2y+(x33x)y+(42x)y=0solvethedifferentialeqnbypowerseries1.y2xy+2py=0usepersevalstheoremto0cos2(απ2)(1α2)2dx.evaluatethisintegralbycontourintegration1.0cos2(απ2)(1α2)2dx.c1+eiπz(z1)2(z+1)2dzcupperhalfplanekliptoquanta

Terms of Service

Privacy Policy

Contact: info@tinkutara.com