Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210467 by maths_plus last updated on 09/Aug/24

1+(√2)+(√3)+...+(√n)   irrational ???

1+2+3+...+nirrational???

Answered by Frix last updated on 10/Aug/24

Yes!!!

Yes!!!

Commented by maths_plus last updated on 10/Aug/24

please, prove it !

please,proveit!

Answered by TonyCWX08 last updated on 10/Aug/24

This can be converted to   ∫_1 ^∞ ((√n))dn  =l_a i_⇒ m_∞  [∫_1 ^a ((√n))dn]  =l_a i_⇒ m_∞  [((2n(√n))/3)]_1 ^a   =l_a i_⇒ m_∞  [((2a(√a))/3)−(2/3)]  =∞  =Diverges

Thiscanbeconvertedto1(n)dn=laim[1a(n)dn]=laim[2nn3]1a=laim[2aa323]==Diverges

Answered by Frix last updated on 10/Aug/24

(√2) is incommensurable to any q∈Q  Let q_j ∈Q  Σ_(k=1) ^n (√n)=1+(√2)+Σ_(k=3) ^n (√n)  (1+(√2)+Σ_(k=3) ^n (√n))∈Q ⇒ Σ_(k=3) ^n (√n)=q_1 −(√2)  Σ_(k=3) ^n (√n)=2+(√3)+Σ_(k=5) ^n (√n)  (2+(√3)+Σ_(k=5) ^n (√n))∈Q ⇒ Σ_(k=5) ^n (√n)=q_2 −(√3)  Σ_(k=5) ^n (√n)=3+(√5)+(√6)+(√7)+(√8)+Σ_(k=10) ^n (√n)  ...  ⇒ for n∈N you never reach Σ_(k=1) ^n (√n)∈Q  because at least the greatest prime p≤n  gives (√p) which again is incommensurable  to any q∈Q, so if Σ_(k=1) ^m (√n)=q_m ∈Q we have  q_m +(√(m+1))+(√(m+2))+...(√p)+...(√(n−1))+(√n)∉Q  and lim_(n→∞)  Σ_(k=1) ^n (√n) =+∞ ∉Q

2isincommensurabletoanyqQLetqjQnk=1n=1+2+nk=3n(1+2+nk=3n)Qnk=3n=q12nk=3n=2+3+nk=5n(2+3+nk=5n)Qnk=5n=q23nk=5n=3+5+6+7+8+nk=10n...fornNyouneverreachnk=1nQbecauseatleastthegreatestprimepngivespwhichagainisincommensurabletoanyqQ,soifmk=1n=qmQwehaveqm+m+1+m+2+...p+...n1+nQandlimnnk=1n=+Q

Terms of Service

Privacy Policy

Contact: info@tinkutara.com